Simulation Modeling of the Motion Control of a Two Degree of Freedom, Tendon Based, Parallel Manipulator in Operational Space Using MATLAB

2007 ◽  
Vol 17 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Jiu HUANG ◽  
Manfred HILLER ◽  
Shi-qing FANG
Author(s):  
Hong Zhou ◽  
Shehu T. Alimi ◽  
Aravind Ravindranath ◽  
Hareesh Vepuri

Double-cylinder parallel manipulators are closed-loop two-degree-of-freedom linkages. They are preferred to use because of their simplicity plus the common advantages of parallel manipulators such as high stiffness, load-bearing, operation speed and precision positioning. Like other parallel manipulators, the output motion of double-cylinder parallel manipulators is not as flexible as two-degree-of-freedom serial manipulators. The motion performance analysis plays a critical role for this type of parallel manipulator to be applied successfully. In this paper, the linkage feasibility conditions are established based on the transmission angle. When feasibility conditions are satisfied, there is no dead position during operation. The workspace is generated by using curve-enveloping theory. The singularity characteristics are analyzed within the workspace. The motion performance index contours within the workspace are produced using the condition number of the manipulator Jacobian matrix. The results of this paper provide guidelines to apply this type of parallel manipulator.


Author(s):  
J Wu ◽  
J Wang ◽  
L Wang ◽  
H Shao

This article deals with the dimensional synthesis and dynamic manipulability of a planar two-degree-of-freedom (DOF) parallel manipulator. The dimensional synthesis based on the workspace and velocity output ratio is presented. The dynamic formulation is derived by using the virtual work principle. Taking into account that the accelerating capabilities at a given point along all directions are more isotropic, the condition number of inertia matrix in the dynamic equation is presented as an index to evaluate the dynamic manipulability of a manipulator. Furthermore, two global performance indices, which consider the mean value and standard deviation of the condition number of inertia matrix, are proposed, respectively. The dynamic manipulability of the parallel manipulator is more isotropic in the centre than at the peripheries of the workspace. The parallel manipulator is incorporated into a four-DOF hybrid machine tool, which also includes a two-DOF worktable.


2021 ◽  
Author(s):  
◽  
Ben Haughey

<p>Development in pick-and-place robotic manipulators continues to grow as factory processes are streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops several tools to assist in the design process. The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM are explored and used to examine the reachable workspace of the manipulator. This method of analysis also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the workspace. A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in terms of its cycle-time. The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator above the workspace. The solution space of all feasible combinations of these dimensions is produced revealing cycle-times with a large degree of variation over the same path. Several optimisation algorithms are applied to finding the manipulator configuration with the fastest cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown to outperform the other techniques.</p>


Sign in / Sign up

Export Citation Format

Share Document