Mental rotation ability determines posterior parietal activity during tactile exploration as well as imagined and executed construction of 3D objects

NeuroImage ◽  
1998 ◽  
Vol 7 (4) ◽  
pp. S119
Author(s):  
L. Jäncke ◽  
A. Kleinschmidt ◽  
S. Mirzazade ◽  
K. Specht ◽  
H.-J. Freund
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ramune Griksiene ◽  
Aurina Arnatkeviciute ◽  
Rasa Monciunskaite ◽  
Thomas Koenig ◽  
Osvaldas Ruksenas

AbstractMental rotation of 3D objects demonstrates one of the largest sex differences. We investigated sex and sex hormones-related differences in behaviour and event related potentials (ERP) using a modified Shepard and Metzler task composed of sequentially presented 3D figures in 29 men and 32 women. We demonstrated a significant increase in response time and decrease in both accuracy and positivity of the parietal ERP with increasing angular disparity between the figures. Higher angular disparity evoked an increase of global field power (GFP) from 270 to 460 ms and different activation topographies from 470 to 583 ms with lower parietal, but higher left frontal positivity. Flatter slopes in higher angular disparity condition suggest distinct strategies being implemented depending on the difficulty of the rotation. Men performed the task more accurately than women. Performance accuracy in women tended to be negatively related to estradiol while the response time tended to increase with increasing progesterone. There were no associations with testosterone. Women demonstrated higher GFP and an increased positivity over the parietal scalp area, while men showed higher activation in the left frontal cortex. Together these findings indicate dynamic angular disparity- and sex-related differences in brain activity during mental rotation of 3D figures.


2014 ◽  
Vol 26 (2) ◽  
pp. 232-246 ◽  
Author(s):  
Takafumi Sasaoka ◽  
Hiroaki Mizuhara ◽  
Toshio Inui

Previous studies have suggested that the posterior parietal cortices and premotor areas are involved in mental image transformation. However, it remains unknown whether these regions really cooperate to realize mental image transformation. In this study, simultaneous EEG and fMRI were performed to clarify the spatio-temporal properties of neural networks engaged in mental image transformation. We adopted a modified version of the mental clock task used by Sack et al. [Sack, A. T., Camprodon, J. A., Pascual-Leone, A., & Goebel, R. The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308, 702–704, 2005; Sack, A. T., Sperling, J. M., Prvulovic, D., Formisano, E., Goebel, R., Di Salle, F., et al. Tracking the mind's image in the brain II: Transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron, 35, 195–204, 2002]. In the modified mental clock task, participants mentally rotated clock hands from the position initially presented at a learned speed for various durations. Subsequently, they matched the position to the visually presented clock hands. During mental rotation of the clock hands, we observed significant beta EEG suppression with respect to the amount of mental rotation at the right parietal electrode. The beta EEG suppression accompanied activity in the bilateral parietal cortices and left premotor cortex, representing a dynamic cortical network for mental image transformation. These results suggest that motor signals from the premotor area were utilized for mental image transformation in the parietal areas and for updating the imagined clock hands represented in the right posterior parietal cortex.


2022 ◽  
Vol 70 (1) ◽  
pp. 433-450
Author(s):  
Akanksha Tiwari ◽  
Ram Bilas Pachori ◽  
Premjit Khanganba Sanjram
Keyword(s):  

2005 ◽  
Vol 17 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Katherine Podzebenko ◽  
Gary F. Egan ◽  
John D. G. Watson

Functional magnetic resonance imaging was performed in 16 healthy subjects while they undertook orientation discrimination tasks of real rotating and mentally rotating alphanumeric characters. Perception of rotating and stationary abstract characters was also performed. Mental rotation and the perception of alphanumeric characters undergoing real rotation activated equivalent cortical areas, in keeping with the analogue hypothesis of mental rotation. In addition, areas along the dorsal stream, including the V5/middle temporal complex and the intraparietal sulcus (IPS), were activated during both the real and imaginary rotary conditions. Within the parietal lobe there were areas of convergence (i.e., recruited by all three motion conditions) and areas of divergence (i.e., selectively activated by a particular condition). Tasks requiring canonical-mirror orientation discrimination revealed involvement of neural substrates localized to the ventrolateral bank of the IPS. Tasks in which this judgment was not performed and during which the subject viewed rotary motion of abstract stimuli recruited activity in the medial bank of the IPS. These results indicate subspecialization of the human posterior parietal lobe according to function.


2013 ◽  
Vol 45 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Shih-Ching Yeh ◽  
Jin-Liang Wang ◽  
Chin-Yeh Wang ◽  
Po-Han Lin ◽  
Gwo-Dong Chen ◽  
...  
Keyword(s):  

2005 ◽  
Vol 17 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Floris P. de Lange ◽  
Peter Hagoort ◽  
Ivan Toni

We have used implicit motor imagery to investigate the neural correlates of motor planning independently from actual movements. Subjects were presented with drawings of left or right hands and asked to judge the hand laterality, regardless of the stimulus rotation from its upright orientation. We paired this task with a visual imagery control task, in which subjects were presented with typographical characters and asked to report whether they saw a canonical letter or its mirror image, regardless of its rotation. We measured neurovascular activity with fast event-related fMRI, distinguishing responses parametrically related to motor imagery from responses evoked by visual imagery and other task-related phenomena. By quantifying behavioral and neurovascular correlates of imagery on a trial-by-trial basis, we could discriminate between stimulus-related, mental rotation-related, and response-related neural activity. We found that specific portions of the posterior parietal and precentral cortex increased their activity as a function of mental rotation only during the motor imagery task. Within these regions, the parietal cortex was visually responsive, whereas the dorsal precentral cortex was not. Response- but not rotation-related activity was found around the left central sulcus (putative primary motor cortex) during both imagery tasks. Our study provides novel evidence on the topography and content of movement representations in the human brain. During intended action, the posterior parietal cortex combines somatosensory and visuomotor information, whereas the dorsal premotor cortex generates the actual motor plan, and the primary motor cortex deals with movement execution. We discuss the relevance of these results in the context of current models of action planning.


2012 ◽  
Vol 50 (8) ◽  
pp. 1844-1851 ◽  
Author(s):  
Kerstin Paschke ◽  
Kirsten Jordan ◽  
Torsten Wüstenberg ◽  
Jürgen Baudewig ◽  
Jürgen Leo Müller

2003 ◽  
Vol 15 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Irina M. Harris ◽  
Carlo Miniussi

A large number of imaging studies have identified a role for the posterior parietal lobe, in particular Brodmann's area 7 and the intraparietal sulcus (IPS), in mental rotation. Here we investigated whether neural activity in the posterior parietal lobe is essential for successful mental rotation performance by observing the effects of interrupting this activity during the execution of a mental rotation task. Repetitive transcranial magnetic stimulation (rTMS) was applied to posterior parietal locations estimated to overlie Brodmann's area 7 in the right and the left hemisphere, or to a posterior midline location (sham condition). In three separate experiments, rTMS (four pulses, 20 Hz) was delivered at these locations either 200–400, 400–600, or 600–800 msec after the onset of a mental rotation trial. Disrupting neural activity in the right parietal lobe interfered with task performance, but only when rTMS was delivered 400 to 600 msec after stimulus onset. Stimulation of the left parietal lobe did not reliably affect mental rotation performance at any of the time points investigated. The time-limited effect of rTMS was replicated in a fourth experiment that directly compared the effects of rTMS applied to the right parietal lobe either 200–400 or 400–600 msec into the mental rotation trial. The results indicate that the right superior posterior parietal lobe plays an essential role in mental rotation, consistent with its involvement in a variety of visuospatial and visuomotor transformations.


Sign in / Sign up

Export Citation Format

Share Document