Carondiac G-Protein Receptor Kinase Activity: Effect of a β-Adrenergic Receptor Antagonist

1997 ◽  
pp. 507-510
Author(s):  
H. Kirk Hammond ◽  
Peipei Ping ◽  
Paul A. Insel
2011 ◽  
Vol 55 (5-6) ◽  
pp. 178-188 ◽  
Author(s):  
William E. Schutzer ◽  
Hong Xue ◽  
John Reed ◽  
Terry Oyama ◽  
Douglas R. Beard ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. H1596-H1603 ◽  
Author(s):  
Dario Leosco ◽  
Giuseppe Rengo ◽  
Guido Iaccarino ◽  
Amelia Filippelli ◽  
Anastasios Lymperopoulos ◽  
...  

Cardiac β-adrenergic receptor (β-AR) signaling and left ventricular (LV) responses to β-AR stimulation are impaired with aging. It is shown that exercise and β-AR blockade have a favorable effect on cardiac and vascular β-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on β-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg·kg−1·day−1 for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to β-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane β-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac β-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of β-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and β-AR blockade can similarly ameliorate β-AR signaling in the aged heart, leading to improved β-AR responsiveness and corresponding LV inotropic reserve.


2002 ◽  
Vol 28 (4) ◽  
pp. 281-289 ◽  
Author(s):  
A. H. Baig ◽  
F. M. Swords ◽  
M. Szaszák ◽  
P. J. King ◽  
L. Hunyady ◽  
...  

2011 ◽  
Vol 286 (22) ◽  
pp. 19259-19269 ◽  
Author(s):  
Il-Ha Lee ◽  
Sung-Hee Song ◽  
Craig R. Campbell ◽  
Sharad Kumar ◽  
David I. Cook ◽  
...  

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na+ absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant (K220RGRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 (D110AGRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


Sign in / Sign up

Export Citation Format

Share Document