scholarly journals 54 A NOVEL AGE- AND STRAIN-DEPENDENT IN VIVO MODEL OF ARTICULAR CARTILAGE HEALING IN MICE

2008 ◽  
Vol 16 ◽  
pp. S38
Author(s):  
N.M. Eltawil ◽  
C. De Bari ◽  
P. Achan ◽  
C. Pitzalis ◽  
F. Dell’Accio
Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1571
Author(s):  
Matilde Tschon ◽  
Francesca Salamanna ◽  
Lucia Martini ◽  
Gianluca Giavaresi ◽  
Luca Lorenzini ◽  
...  

The purpose of this study was to verify the efficacy of a single intra-articular (i.a.) injection of a hyaluronic acid-chitlac (HY-CTL) enriched with two low dosages of triamcinolone acetonide (TA, 2.0 mg/mL and 4.5 mg/mL), in comparison with HY-CTL alone, with a clinical control (TA 40 mg/mL) and with saline solution (NaCl) in an in vivo osteoarthritis (OA) model. Seven days after chemical induction of OA, 80 Sprague Dawley male rats were grouped into five arms (n = 16) and received a single i.a. injection of: 40 mg/mL TA, HY-CTL alone, HY-CTL with 2.0 mg/mL TA (RV2), HY-CTL with 4.5 mg/mL TA (RV4.5) and 0.9% NaCl. Pain sensitivity and Catwalk were performed at baseline and at 7, 14 and 21 days after the i.a. treatments. The histopathology of the joint, meniscus and synovial reaction, type II collagen expression and aggrecan expression were assessed 21 days after treatments. RV4.5 improved the local pain sensitivity in comparison with TA and NaCl. RV4.5 and TA exerted similar beneficial effects in all gait parameters. Histopathological analyses, measured by Osteoarthritis Research Society International (OARSI) and Kumar scores and by immunohistochemistry, evidenced that RV4.5 and TA reduced OA features in the same manner and showed a stronger type II collagen and aggrecan expression; both treatments reduced synovitis, as measured by Krenn score and, at the meniscus level, RV4.5 improved degenerative signs as evaluated by Pauli score. TA or RV4.5 treatments limited the local articular cartilage deterioration in knee OA with an improvement of the physical structure of articular cartilage, gait parameters, the sensitivity to local pain and a reduction of the synovial inflammation.


Author(s):  
Kristy T. S. Palomares ◽  
Thomas A. Einhorn ◽  
Louis C. Gerstenfeld ◽  
Elise F. Morgan

The mechanical properties of hyaline cartilage depend heavily on tissue structure and biochemical composition. Glycosaminoglycans (GAGs) and collagen fibrils are the key extracellular matrix components of hyaline cartilage that bestow compressive and tensile stiffness, respectively.[1–2] In articular cartilage, a decline in GAG content and collagen organization with injury or with diseases such as osteoarthritis is intimately linked with a decline in mechanical function.[3] In tissue-engineered cartilage and articular cartilage explants, mechanical loading in vitro results in increased aggrecan mRNA expression, GAG content, and increased stiffness.[4–6] These findings suggest that mechanical loading could be applied in vivo to promote cartilage repair via modulation of gene expression, tissue structure, and tissue composition. We have previously developed an in vivo model of skeletal repair in which application of a controlled bending motion to a healing osteotomy gap results in formation of cartilage within the gap.[6] Using this model, we sought to characterize the biochemical composition and collagen structure of the mechanically induced cartilaginous tissue. The objectives of this study were: 1) to quantify the total GAG content and aggrecan mRNA expression; and 2) to characterize the collagen fiber orientation.


Author(s):  
U Lichtenauer ◽  
PL Schmid ◽  
A Oßwald ◽  
I Renner-Müller ◽  
M Reincke ◽  
...  
Keyword(s):  

1997 ◽  
Vol 78 (04) ◽  
pp. 1242-1248 ◽  
Author(s):  
David E Newby ◽  
Robert A Wright ◽  
Christopher A Ludlam ◽  
Keith A A Fox ◽  
Nicholas A Boon ◽  
...  

SummaryThe effects on blood flow and plasma fibrinolytic and coagulation parameters of intraarterial substance P, an endothelium dependent vasodilator, and sodium nitroprusside, a control endothelium independent vasodilator, were studied in the human forearm circulation. At subsystemic locally active doses, both substance P (2-8 pmol/min) and sodium nitroprusside (2-8 μg/min) caused dose-dependent vasodilatation (p <0.001 for both) without affecting plasma concentrations of PAI-1, von Willebrand factor antigen or factor VIII:C activity. Substance P caused local increases in t-PA antigen and activity (p <0.001) in the infused arm while sodium nitroprusside did not. At higher doses, substance P increased blood flow and t-PA concentrations in the noninfused arm. We conclude that brief, locally active and subsystemic infusions of intraarterial substance P cause a rapid and substantial local release of t-PA which appear to act via a flow and nitric oxide independent mechanism. This model should provide a useful and selective method of assessing the in vivo capacity of the forearm endothelium to release t-PA acutely.


2006 ◽  
Vol 66 (S 01) ◽  
Author(s):  
N Ochsenbein-Kölble ◽  
J Jani ◽  
G Verbist ◽  
L Lewi ◽  
K Marquardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document