113 NEUROPATHIC PAIN IS DETECTED BY FUNCTIONAL MRI OF THE BRAIN IN THE EXPERIMENTAL SPINAL CORD INJURY

2009 ◽  
Vol 13 (S1) ◽  
Author(s):  
P. Hassanzadeh
Pain ◽  
2008 ◽  
Vol 138 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Toshiki Endo ◽  
Christian Spenger ◽  
Jingxia Hao ◽  
Teiji Tominaga ◽  
Zsuzsanna Wiesenfeld-Hallin ◽  
...  

1978 ◽  
Vol 48 (2) ◽  
pp. 239-251 ◽  
Author(s):  
Andrew J. K. Smith ◽  
Douglas B. McCreery ◽  
James R. Bloedel ◽  
Shelley N. Chou

✓ The authors present the results of a controlled, randomized study of alterations in spinal cord blood flow, CO2 responsiveness, and autoregulation following experimental spinal cord injury in cats. Permanent paraplegia is shown to be associated with persistent hyperemia, loss of CO2 responsiveness, and impaired autoregulation in the white matter at the injury site. Probable mechanisms underlying these changes in spinal cord vasomotor control are discussed. Marked similarities between vascular responses of injured spinal cord and luxury perfusion of the brain are pointed out.


2019 ◽  
Vol 61 (11) ◽  
pp. 1309-1318 ◽  
Author(s):  
Wenzhao Wang ◽  
Wei Xie ◽  
Qianqian Zhang ◽  
Lei Liu ◽  
Jian Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Shana R. Black ◽  
Jace B. King ◽  
Mark A. Mahan ◽  
Jeffrey Anderson ◽  
Christopher R. Butson

Neuropathic pain (NP) is a devastating chronic pain condition affecting roughly 80% of the spinal cord injury (SCI) patient population. Current treatment options are largely ineffective and neurophysiological mechanisms of NP are not well-understood. Recent studies in neuroimaging have suggested that NP patients have differential patterns of functional activity that are dependent upon the neurological condition causing NP. We conducted an exploratory pilot study to examine functional activation and connectivity in SCI patients with chronic NP compared to SCI patients without NP. We developed a novel somatosensory attention task to identify short term fluctuations in neural activity related to NP vs. non-painful somatosensation using functional magnetic resonance imaging (fMRI). We also collected high-resolution resting state fMRI to identify connectivity-based correlations over time between the two groups. We observed increased activation during focus on NP in brain regions associated with somatosensory integration and representational knowledge in pain subjects when compared with controls. Similarly, NP subjects showed increased connectivity at rest in many of the same areas of the brain, with positive correlations between somatomotor networks, the dorsal attention network, and regions associated with pain and specific areas of painful and non-painful sensation within our cohort. Although this pilot analysis did not identify statistically significant differences between groups after correction for multiple comparisons, the observed correlations between NP and functional activation and connectivity align with a priori hypotheses regarding pain, and provide a well-controlled preliminary basis for future research in this severely understudied patient population. Altogether, this study presents a novel task, identifies regions of increased task-based activation associated with NP after SCI in the insula, prefrontal, and medial inferior parietal cortices, and identifies similar regions of increased functional connectivity associated with NP after SCI in sensorimotor, cingulate, prefrontal, and inferior medial parietal cortices. This, along with our complementary results from a structurally based analysis, provide multi-modal evidence for regions of the brain specific to the SCI cohort as novel areas for further study and potential therapeutic targeting to improve outcomes for NP patients.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chiaki Yamada ◽  
Aiko Maeda ◽  
Katsuyuki Matsushita ◽  
Shoko Nakayama ◽  
Kazuhiro Shirozu ◽  
...  

Abstract Background Patients with spinal cord injury (SCI) frequently complain of intractable pain that is resistant to conservative treatments. Here, we report the successful application of 1-kHz high-frequency spinal cord stimulation (SCS) in a patient with refractory neuropathic pain secondary to SCI. Case presentation A 69-year-old male diagnosed with SCI (C4 American Spinal Injury Association Impairment Scale A) presented with severe at-level bilateral upper extremity neuropathic pain. Temporary improvement in his symptoms with a nerve block implied peripheral component involvement. The patient received SCS, and though the tip of the leads could not reach the cervical vertebrae, a 1-kHz frequency stimulus relieved the intractable pain. Conclusions SCI-related symptoms may include peripheral components; SCS may have a considerable effect on intractable pain. Even when the SCS electrode lead cannot be positioned in the target area, 1-kHz high-frequency SCS may still produce positive effects.


Author(s):  
Andrew D. Gaudet ◽  
Laura K. Fonken ◽  
Monica T. Ayala ◽  
Steven F. Maier ◽  
Linda R. Watkins

Sign in / Sign up

Export Citation Format

Share Document