P62 The effects of type I IGF receptor inhibition with small-molecule diarylureas in a mouse model of type I diabetic kidney disease

2010 ◽  
Vol 20 ◽  
pp. S61
Author(s):  
A. Troib ◽  
D. Wiezel
2011 ◽  
Vol 21 (5) ◽  
pp. 285-291 ◽  
Author(s):  
Ariel Troib ◽  
Daniel Landau ◽  
Jack F. Youngren ◽  
Leonid Kachko ◽  
Ralph Rabkin ◽  
...  

2003 ◽  
Vol 284 (6) ◽  
pp. F1138-F1144 ◽  
Author(s):  
Kumar Sharma ◽  
Peter McCue ◽  
Stephen R. Dunn

Diabetic nephropathy is increasing in incidence and is now the number one cause of end-stage renal disease in the industrialized world. To gain insight into the genetic susceptibility and pathophysiology of diabetic nephropathy, an appropriate mouse model of diabetic nephropathy would be critical. A large number of mouse models of diabetes have been identified and their kidney disease characterized to various degrees. Perhaps the best characterized and most intensively investigated model is the db/ db mouse. Because this model appears to exhibit the most consistent and robust increase in albuminuria and mesangial matrix expansion, it has been used as a model of progressive diabetic renal disease. In this review, we present the findings from various studies on the renal pathology of the db/ db mouse model of diabetes in the context of human diabetic nephropathy. Furthermore, we discuss shortfalls of assessing functional renal disease in mouse models of diabetic kidney disease.


2021 ◽  
Vol 1 (1) ◽  
pp. 15-26
Author(s):  
Devang M. Patel ◽  
Yuxin Yang ◽  
Kexin Shi ◽  
Tieqiao Wu ◽  
Mark E. Cooper ◽  
...  

Abstract Diabetes is a noncommunicable disease and arguably represents the greatest pandemic in human history. Diabetic kidney disease (DKD) is seen in both type 1 and type 2 diabetes and can be detected in up to 30–50% of diabetic subjects. DKD is a progressive chronic kidney disease (CKD) and is a leading cause of mortality and morbidity in patients with diabetes. Renal fibrosis and inflammation are the major pathological features of DKD. There are a large number of independent and overlapping profibrotic and pro-inflammatory pathways involved in the pathogenesis and progression of DKD. Among these pathways, the transforming growth factor-β (TGF-β) pathway plays a key pathological role by promoting fibrosis. Sirtuin-1 (SIRT1) is a protein deacetylase that has been shown to be renoprotective with an anti-inflammatory effect. It is postulated that a reduction in renal SIRT1 levels could play a key role in the pathogenesis of DKD and that restoration of SIRT1 will attenuate DKD. Cell division autoantigen 1 (CDA1) synergistically enhances the profibrotic effect of TGF-β in DKD by regulating the expression of the TGF-β type I receptor (TβRI). CDA1 has also been found to be an inhibitor of SIRT1 in the DNA damage response. Indeed, targeting CDA1 in experimental DKD not only attenuates diabetes-associated renal fibrosis but also attenuates the expression of key pro-inflammatory genes such as tumor necrosis factor-α (TNF-α) and Monocyte Che moattractant Protein-1 (MCP-1). In conclusion, there is a large body of experimental data to support the view that targeting CDA1 is a superior approach to directly targeting TGF-β in DKD since it is not only safe but also efficacious in retarding both fibrosis and inflammation.


Diabetologia ◽  
2011 ◽  
Vol 54 (10) ◽  
pp. 2713-2723 ◽  
Author(s):  
F. Liu ◽  
H. Y. Chen ◽  
X. R. Huang ◽  
A. C. K. Chung ◽  
L. Zhou ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. e17-e17
Author(s):  
Elisabet Van Loon ◽  
Joseph Pierre Aboumsallem ◽  
Evelyne Lerut ◽  
Marija Bogojevic ◽  
Aleksandar Denic ◽  
...  

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Keita Shibata ◽  
Erika Yasuda ◽  
Tomoka Nishinaga ◽  
Sarara Karasawa ◽  
Tomoaki Yamaguchi ◽  
...  

1999 ◽  
Vol 276 (1) ◽  
pp. F54-F61 ◽  
Author(s):  
Kumar Sharma ◽  
Lewei Wang ◽  
Yanqing Zhu ◽  
Aurora DeGuzman ◽  
Gao-Yuan Cao ◽  
...  

The mechanisms underlying glomerular hypertrophy and hyperfiltration in diabetes remain unclear. We have previously demonstrated that the cytokine transforming growth factor-β1 (TGF-β1) is increased in early diabetic kidney disease and TGF-β1 inhibits the expression of the inositol 1,4,5-trisphosphate (IP3)-gated calcium channel, the type I IP3 receptor (IP3R), in mesangial cells. To test the hypothesis that reduced type I IP3R may be important in diabetic kidney disease, we evaluated type I IP3R expression in the kidney of streptozotocin-induced diabetic rats and mice. Two-week-old diabetic rats have decreased renal type I IP3R protein and mRNA levels. Immunostaining of normal rat kidney demonstrated presence of type I IP3R in glomerular and vascular smooth muscle cells, whereas diabetic rats had reduced staining in both compartments. Reduction of type I IP3R also occurred in parallel with renal hypertrophy, increased creatinine clearance, and increased renal TGF-β1 expression in the diabetic rats. Two-week-old diabetic mice also had reduced renal type I IP3R protein and mRNA expression in association with renal hypertrophy and increased TGF-β1 mRNA expression. These findings demonstrate that there is reduced type I IP3R in glomerular and vascular smooth muscle cells in the diabetic kidney, which may contribute to the altered renal vasoregulation and renal hypertrophy of diabetes.


Sign in / Sign up

Export Citation Format

Share Document