Beyond diagnosis: understanding the downstream impacts of genome sequencing for undiagnosed rare diseases

2021 ◽  
Vol 132 ◽  
pp. S290
Author(s):  
Meghan Halley ◽  
Jennifer Young ◽  
Holly Tabor
Author(s):  
Michael Abbott ◽  
Lynda McKenzie ◽  
Blanca Viridiana Guizar Moran ◽  
Sebastian Heidenreich ◽  
Rodolfo Hernández ◽  
...  

AbstractNovel developments in genomic medicine may reduce the length of the diagnostic odyssey for patients with rare diseases. Health providers must thus decide whether to offer genome sequencing for the diagnosis of rare conditions in a routine clinical setting. We estimated the costs of singleton standard genetic testing and trio-based whole genome sequencing (WGS), in the context of the Scottish Genomes Partnership (SGP) study. We also explored what users value about genomic sequencing. Insights from the costing and value assessments will inform a subsequent economic evaluation of genomic medicine in Scotland. An average cost of £1,841 per singleton was estimated for the standard genetic testing pathway, with significant variability between phenotypes. WGS cost £6625 per family trio, but this estimate reflects the use of WGS during the SGP project and large cost savings may be realised if sequencing was scaled up. Patients and families valued (i) the chance of receiving a diagnosis (and the peace of mind and closure that brings); (ii) the information provided by WGS (including implications for family planning and secondary findings); and (iii) contributions to future research. Our costings will be updated to address limitations of the current study for incorporation in budget impact modelling and cost-effectiveness analysis (cost per diagnostic yield). Our insights into the benefits of WGS will guide the development of a discrete choice experiment valuation study. This will inform a user-perspective cost–benefit analysis of genome-wide sequencing, accounting for the broader non-health outcomes. Taken together, our research will inform the long-term strategic development of NHS Scotland clinical genetics testing services, and will be of benefit to others seeking to undertake similar evaluations in different contexts.


2021 ◽  
pp. jmedgenet-2021-107902
Author(s):  
Thomas Cloney ◽  
Lyndon Gallacher ◽  
Lynn S Pais ◽  
Natalie B Tan ◽  
Alison Yeung ◽  
...  

BackgroundClinical exome sequencing typically achieves diagnostic yields of 30%–57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals.AimWe share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases.MethodsWe enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis.ResultsIn 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis.ConclusionWe share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease–gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.


2019 ◽  
Vol 22 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Katharina Schwarze ◽  
James Buchanan ◽  
Jilles M. Fermont ◽  
Helene Dreau ◽  
Mark W. Tilley ◽  
...  

BMJ Open ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. e029699 ◽  
Author(s):  
Saskia C Sanderson ◽  
Melissa Hill ◽  
Christine Patch ◽  
Beverly Searle ◽  
Celine Lewis ◽  
...  

ObjectivesGenome sequencing is poised to be incorporated into clinical care for diagnoses of rare diseases and some cancers in many parts of the world. Healthcare professionals are key stakeholders in the clinical delivery of genome sequencing-based services. Our aim was to explore views of healthcare professionals with experience of offering genome sequencing via the 100 000 Genomes Project.DesignInterview study using thematic analysis.SettingFour National Health Service hospitals in London.ParticipantsTwenty-three healthcare professionals (five genetic clinicians and eight non-genetic clinicians (all consultants), and 10 ‘consenters’ from a range of backgrounds) involved in identifying or consenting patients for the 100 000 Genomes Project.ResultsMost participants expressed positive attitudes towards genome sequencing in terms of improved ability to diagnose rare diseases, but many also expressed concerns, with some believing its superiority over exome sequencing had not yet been demonstrated, or worrying that non-genetic clinicians are inadequately prepared to discuss genome sequencing results with patients. Several emphasised additional evidence about utility of genome sequencing in terms of both main and secondary findings is needed. Most felt non-genetic clinicians could support patients during consent, as long as they have appropriate training and support from genetic teams. Many stated genetics experts will play a vital role in training and supporting non-genetic clinicians in variant interpretation and results delivery, particularly for more complex cases.ConclusionsHealthcare professionals responsible for delivering clinical genome sequencing have largely positive views about the potential for genome sequencing to improve diagnostic yield, but also significant concerns about practical aspects of offering these tests. Non-genetic clinicians delivering genome sequencing require guidance and support. Additional empirical evidence is needed to inform policy and practice, including how genome compares to exome sequencing; utility of secondary findings; training, in particular of non-genetic health professionals; and mechanisms whereby genetics teams can offer appropriate support to their non-genetics colleagues.


2021 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Bruna Mascaro Cordeiro de Azevedo ◽  
Danielle Ribeiro Lucon ◽  
Maria Soares Nobrega ◽  
Rodrigo de Souza Reis ◽  
...  

Rare diseases affect 3.2 to 13.2 million individuals in Brazil. The Brazilian Rare Genomes Project is envisioned to further the implementation of genomic medicine into the Brazilian public healthcare system. Here we report the results of the validation of a whole genome sequencing (WGS) procedure for implementation in a clinical laboratory. In addition, we report data quality for the first 1,200 real world patients sequenced. For the validation, we sequenced a well characterized group of 76 samples, including seven gold standard genomes, using a PCR-free WGS protocol on Illumina Novaseq 6000 equipment. We compared the observed variant calls with their expected calls, observing good concordance for single nucleotide variants (SNVs; mean F-measure = 99.82%) and indels (mean F-measure = 99.57%). Copy number variants and structural variants events detection performances were as expected (F-measures 96.6% and 90.3%, respectively). Our protocol presented excellent intra- and inter-assay reproducibility, with coefficients of variation ranging between 0.03% and 0.20% and 0.02% and 0.09%, respectively. Limitations of the procedure include the inability to confidently detect variants such as uniparental disomy, balanced translocations, repeat expansion variants and low-level mosaicism. In summary, the observed performance of the test was in accordance with that seen in the best centers worldwide. The Rare Genomes Project is an important initiative to improve Brazil's general population access to the innovative WGS technology which has the potential to reduce the time until diagnosis of rare diseases, bringing pivotal improvements for the quality of life of the affected individuals.


2021 ◽  
pp. 153537022110400
Author(s):  
Haseeb Nisar ◽  
Bilal Wajid ◽  
Samiah Shahid ◽  
Faria Anwar ◽  
Imran Wajid ◽  
...  

Rare diseases affect nearly 300 million people globally with most patients aged five or less. Traditional diagnostic approaches have provided much of the diagnosis; however, there are limitations. For instance, simply inadequate and untimely diagnosis adversely affects both the patient and their families. This review advocates the use of whole genome sequencing in clinical settings for diagnosis of rare genetic diseases by showcasing five case studies. These examples specifically describe the utilization of whole genome sequencing, which helped in providing relief to patients via correct diagnosis followed by use of precision medicine.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Víctor Raggio ◽  
Nicolas Dell’Oca ◽  
Camila Simoes ◽  
Alejandra Tapié ◽  
Conrado Medici ◽  
...  

Abstract Background Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. Results We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. This gene is related to Grange syndrome, a recessive rare disease, whose symptoms include stenosis or occlusion of multiple arteries, congenital heart defects, brachydactyly, syndactyly, bone fragility, and learning disabilities. Bioinformatic analyses propose these mutations as the most likely cause of the disease, according to its frequency, in silico predictors, conservation analyses, and effect on the protein product. Additionally, we confirmed one mutation in each parent, supporting a compound heterozygous status in the child. Conclusions In general, we think that this finding can contribute to the use of whole genome sequencing as a diagnosis tool of rare diseases, and in particular, it can enhance the set of known mutations associated with different diseases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hong-Yan Liu ◽  
Liyuan Zhou ◽  
Meng-Yue Zheng ◽  
Jia Huang ◽  
Shu Wan ◽  
...  

AbstractRare diseases are usually chronically debilitating or even life-threatening with diagnostic and therapeutic challenges in current clinical practice. It has been estimated that 80% of rare diseases are genetic in origin, and thus genome sequencing-based diagnosis offers a promising alternative for rare-disease management. In this study, 79 individuals from 16 independent families were performed for whole-genome sequencing (WGS) in an effort to identify the causative mutations for 16 distinct rare diseases that are largely clinically intractable. Comprehensive analysis of variations, including simple nucleotide variants (SNVs), copy-number variations (CNVs), and structural variations (SVs), was implemented using the WGS data. A flexible analysis pipeline that allowed a certain degree of misclassification of disease status was developed to facilitate the identification of causative variants. As a result, disease-causing variants were identified in 10 of the 16 investigated diseases, yielding a diagnostic rate of 62.5%. Additionally, new potentially pathogenic variants were discovered for two disorders, including IGF2/INS-IGF2 in mitochondrial disease and FBN3 in Klippel–Trenaunay–Weber syndrome. Our WGS analysis not only detected a CNV associated with 3p deletion syndrome but also captured a simple sequence repeat (SSR) variation associated with Machado–Joseph disease. To our knowledge, this is the first time the clinical WGS analysis of short-read sequences has been used successfully to identify a causative SSR variation that perfectly segregates with a repeat expansion disorder. After the WGS analysis, we confirmed the initial diagnosis for three of 10 established disorders and modified or corrected the initial diagnosis for the remaining seven disorders. In summary, clinical WGS is a powerful tool for the diagnosis of rare diseases, and its diagnostic clarity at molecular levels offers important benefits for the participating families.


Sign in / Sign up

Export Citation Format

Share Document