P9 Altered expression of plasma membrane proteins on breast cancer cells capable of forming metastasis. Identification by comparative proteomic analysis

2007 ◽  
Vol 5 (8) ◽  
pp. 27
Author(s):  
R. Leth-Larsen ◽  
R. Lund ◽  
H.V. Hansen ◽  
A.-V. Lænkholm ◽  
O.N. Jensen ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lisa Svartdal Normann ◽  
Miriam Ragle Aure ◽  
Suvi-Katri Leivonen ◽  
Mads Haugland Haugen ◽  
Vesa Hongisto ◽  
...  

AbstractHER2-positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2 + breast cancers.


2021 ◽  
Vol 22 (15) ◽  
pp. 8165
Author(s):  
Amanda Chantziou ◽  
Kostas Theodorakis ◽  
Hara Polioudaki ◽  
Eelco de Bree ◽  
Marilena Kampa ◽  
...  

In breast cancer, expression of Cluster of Differentiation 24 (CD24), a small GPI-anchored glycoprotein at the cell periphery, is associated with metastasis and immune escape, while its absence is associated with tumor-initiating capacity. Since the mechanism of CD24 sorting is unknown, we investigated the role of glycosylation in the subcellular localization of CD24. Expression and localization of wild type N36- and/or N52-mutated CD24 were analyzed using immunofluorescence in luminal (MCF-7) and basal B (MDA-MB-231 and Hs578T) breast cancer cells lines, as well as HEK293T cells. Endogenous and exogenously expressed wild type and mutated CD24 were found localized at the plasma membrane and the cytoplasm, but not the nucleoplasm. The cell lines showed different kinetics for the sorting of CD24 through the secretory/endocytic pathway. N-glycosylation, especially at N52, and its processing in the Golgi were critical for the sorting and expression of CD24 at the plasma membrane of HEK293T and basal B type cells, but not of MCF-7 cells. In conclusion, our study highlights the contribution of N-glycosylation for the subcellular localization of CD24. Aberrant N-glycosylation at N52 of CD24 could account for the lack of CD24 expression at the cell surface of basal B breast cancer cells.


Neoplasia ◽  
2008 ◽  
Vol 10 (9) ◽  
pp. 1014-IN11 ◽  
Author(s):  
Philippe Kischel ◽  
François Guillonneau ◽  
Bruno Dumont ◽  
Akeila Bellahcène ◽  
Verena Stresing ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 447 ◽  
Author(s):  
Michaël Trichet ◽  
Rosamaria Lappano ◽  
Mathilde Belnou ◽  
Lilian Salazar Vazquez ◽  
Isabel Alves ◽  
...  

The peptide ERα17p, which corresponds to the 295-311 fragment of the hinge/AF2 domains of the human estrogen receptor α (ERα), exerts apoptosis in breast cancer cells through a mechanism involving the G protein-coupled estrogen-dependent receptor GPER. Besides this receptor-mediated mechanism, we have detected a direct interaction (Kd value in the micromolar range) of this peptide with lipid vesicles mimicking the plasma membrane of eukaryotes. The reversible and not reversible pools of interacting peptide may correspond to soluble and aggregated membrane-interacting peptide populations, respectively. By using circular dichroism (CD) spectroscopy, we have shown that the interaction of the peptide with this membrane model was associated with its folding into β sheet. A slight leakage of the 5(6)-fluorescein was also observed, indicating lipid bilayer permeability. When the peptide was incubated with living breast cancer cells at the active concentration of 10 μM, aggregates were detected at the plasma membrane under the form of spheres. This insoluble pool of peptide, which seems to result from a fibrillation process, is internalized in micrometric vacuoles under the form of fibrils, without evidence of cytotoxicity, at least at the microscopic level. This study provides new information on the interaction of ERα17p with breast cancer cell membranes as well as on its mechanism of action, with respect to direct membrane effects.


Life Sciences ◽  
2019 ◽  
Vol 234 ◽  
pp. 116777
Author(s):  
Heba M. Fahmy ◽  
Alaa M. Ismail ◽  
Amena S. El-Feky ◽  
Esraa S. Abu Serea ◽  
Wael M. Elshemey

Sign in / Sign up

Export Citation Format

Share Document