Influence of decomposition on the thermal stability of undercooled Zr-Ti-Cu-Ni-Al alloys

2001 ◽  
Vol 44 (8-9) ◽  
pp. 1269-1273 ◽  
Author(s):  
Andreas A Kündig ◽  
Jörg F Löffler ◽  
William L Johnson ◽  
Peter J Uggowitzer ◽  
P Thiyagarajan
2021 ◽  
Vol 31 (1) ◽  
pp. 11-23
Author(s):  
Hany Rizk AMMAR ◽  
Muneer BAIG ◽  
Asiful Hossain SEIKH ◽  
Jabair Ali MOHAMMED

1999 ◽  
Vol 14 (5) ◽  
pp. 1760-1770 ◽  
Author(s):  
H. G. Jiang ◽  
H. M. Hu ◽  
E. J. Lavernia

The synthesis of nanocrystalline Fe, Fe–4 wt% Al, and Fe–10 wt% Al solid solutions by SPEX ball milling has been studied. The microstructural evolution during ball milling, as well as subsequent heat treatment, has been characterized. The results demonstrate that ball milling promotes the formation of αFe–4 wt% Al and αFe–10 wt% Al solid solutions by reducing the activation energy of these alloys and generating thermal energy during this process. For Fe–10 wt% Al powders milled for various time intervals up to approximately 20 min, the FeAl intermetallic compound is formed. For alloys annealed at temperatures ranging from 600 to 1000 °C, the addition of 10 wt% Al to Fe significantly enhances the thermal stability of the nanocrystalline Fe–Al alloys. Interestingly, the addition of Al within the range of 4–10 wt% seems to have little effect on the thermal stability of these alloys annealed under the same conditions. Also, the thermal stability improves for alloys milled in air as opposed to those processed using Ar.


2012 ◽  
Vol 706-709 ◽  
pp. 329-334 ◽  
Author(s):  
Zuo Ren Nie ◽  
Hui Huang ◽  
Kun Yuan Gao ◽  
Bo Long Li ◽  
Wei Wang ◽  
...  

Mechanical properties, corrosion resistance, and microstructure of Al alloys with trace element erbium were studied. Systemic studies in the pure aluminum and 5xxx series Al alloys showed that the tensile strength was significantly improved by above 20% with little loss of elongation by Er alloying. The 5xxx series Al alloys with erbium also exhibited excellent corrosion resistance. Erbium improved the aging hardness response of 7xxx series Al alloys and the addition of 0.4%Er to Al-Zn-Mg alloys increases the hardness by 35MPa. In all experiment Al alloys, a small addition of 0.1wt% Er induced a quick increase of the tensile strength and the amount of 0.4%Er shows optimized balance of the strength and ductility. The Er addition improved the thermal stability, with increasing the starting Rex temperature about 50°C in all investigated Al alloys. With regard to the microstructure mechanisms, in all experimental Al alloys Er addition has significantly refined the microstructure, which mainly attributed to presence the Al3Er particles. In the 7xxx series Al alloys, no observable PFZ after addition of 0.4% Er was found. The fatigue property, the fracture toughness and the thermal stability of microstructure and properties are on the way.


1985 ◽  
Vol 58 ◽  
Author(s):  
K. Aoki ◽  
K. Hiraga ◽  
T. Masumoto

ABSTRACTTi-Ni-Al alloys were rapidly quenched from a molten state by the melt spinning method. Three kinds of metastable phases, namely, amorphous,nonequilibrium and quasicrystalline phases are formed in these alloys. The amorphous phase is formed in the range of 35 to 70 at% Ti and 0 to 25 at% Al. The nonequilibrium phases are formed in the composition range of 25 to 33 at% Ti. On the other hand, fine quasicrystalline phases are distributed in the amorphous matrix of the Ti-rich alloys. Crystallization temperatures and the hardness of the amorphous alloys were also examined.


Author(s):  
Myoung-Gyun Kim ◽  
Si-Young Sung ◽  
Hee-Kook Kim ◽  
Jung-Il Lee ◽  
Young-Jig Kim

1998 ◽  
Vol 553 ◽  
Author(s):  
D. Zander ◽  
U. Köster ◽  
N. Eliaz ◽  
D. Eliezer ◽  
D. Plachke

AbstractThe high number of tetrahedrally coordinated sites for interstitial hydrogen and the favorable hydrogen-metal chemistry make quasicrystalline Zr-Cu-Ni-Al alloys a candidate for hydrogen storage applications. The icosahedral phase in Zr69.5Cu12Ni11Al7.5 has been shown to absorb electrochemically hydrogen up to H/M = 1.6. Only partially desorption of hydrogen was observed by TDA at about 500°C. Since hydrogen desorption seems to be hindered by a surface barrier, the hydrogen remains in the quasicrystal thus influencing their thermal stability. Such effects of hydrogen were studied by DSC and microstructural investigations. With increasing hydrogen content the decomposition of icosahedral Zr69.5. Cu12Ni11A17.5 is shifted to lower temperatures. Quasicrystals decompose by a discontinous transformation into the tetragonal Zr2Cu phase, the tetragonal Zr2Ni and the hexagonal Zr6NiAl2. Hydrogenation does not influence the phases formed during decomposition, but leds to the formation of a finer microstructure. We assume that the defects formed during the hydrogenation accelerate the nucleation of the stable crystalline phase.


Calphad ◽  
2019 ◽  
Vol 67 ◽  
pp. 101678 ◽  
Author(s):  
G. Deffrennes ◽  
B. Gardiola ◽  
M. Lomello-Tafin ◽  
A. Pasturel ◽  
A. Pisch ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1420
Author(s):  
Jihang Lan ◽  
Zhaoqun Chen ◽  
Linghong Liu ◽  
Qingzhou Zhang ◽  
Mengdong He ◽  
...  

The L12 type trialuminide compounds Al3M possess outstanding mechanical properties, which enable them to be ideal for dispersed strengthening phases for the high-strength thermally stable Al based alloys. Ab-initio calculations based on the density functional theory (DFT) were performed to study the structural, electronic, thermal, and thermodynamic properties of L12-Al3M (M = Er, Hf, Lu, Sc, Ti, Tm, Yb, Li, Mg, Zr) structures in Al alloys. The total energy calculations showed that the L12 structures are quite stable. On the basis of the thermodynamic calculation, we found that the Yb, Lu, Er, and Tm atoms with a larger atomic radii than Al promoted the thermal stability of the Al alloys, and the thermal stability rank has been constructed as: Al3Yb > Al3Lu > Al3Er > Al3Tm > Al, which shows an apparent positive correlation between the atomic size and thermal stability. The chemical bond offers a firm basis upon which to forge links not only within chemistry but also with the macroscopic properties of materials. A careful analysis of the charge density indicated that Yb, Lu, Er, and Tm atoms covalently bonded to Al, providing a strong intrinsic basis for the thermal stability of the respective structures, suggesting that the addition of big atoms (Yb, Lu, Er, and Tm) are beneficial for the thermal stability of Al alloys.


Sign in / Sign up

Export Citation Format

Share Document