W1.4 In vivo evidence of neurophysiological differentiation between type 1 and type 2 diabetic nerves

2011 ◽  
Vol 122 ◽  
pp. S7
Author(s):  
R. Arnold ◽  
C.S-Y. Lin ◽  
M.C. Kiernan ◽  
A.V. Krishnan
Keyword(s):  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1601-1601
Author(s):  
Sugata Hazra ◽  
Yagna P.R. Jarajapu ◽  
Li Liu ◽  
Sergio Caballero ◽  
Valerie Stepps ◽  
...  

Abstract Abstract 1601 Objective: The dysfunction of human diabetic CD34+ endothelial progenitor cells limits their utility in autologous cell therapy for vascular complications. Previously, we showed that transient inhibition of transforming growth factor-beta 1 (TGF-β1) enhances vascular reparative function of human CD34+ cells isolated from diabetics (Bhatwadekar et al, 2010). Expression of PAI-1, the major gene product of TGF-β1 activation, is increased by high glucose and insulin exposure in endothelial cells and PAI-1 has been shown to be increased in the serum of diabetics. We asked whether the beneficial effects of TGF-β1 blockade on CD34+ cells function were mediated by inhibition of PAI-1 and whether blocking of PAI-1 could correct diabetes associated dysfunction of these cells. Research Design and Methods: Plasma determinations of PAI-1 and TGF-β1 (both measured by ELISA) were compared in type 2 (n=17) and type 1 (n=7) diabetic patients. CD34+ cells from these individuals were isolated and analyzed for cell survival (in the presence and absence of growth factors), cell proliferation, cell cycle analysis and migration. The effect of TGF-β1 phosphorodiamidate morpholino oligomers (PMO) treatment on PAI-1 level was determined in CD34+ cells. In CD34+ cells, PAI-1 was blocked using either lentivirus expressing PAI-1 shRNA or PAI-1 siRNA. In vivo homing ability of PAI-1 inhibited CD34+ cells was assessed using an ocular model of ischemia/reperfusion (I/R) Injury. Results: Plasma PAI-1 level was increased in type 2 diabetic patients compared to type 1 (p<0.05) and directly correlated with TGF-β1 plasma levels (r= 0.44). TGF-β1 PMO treatment resulted in a reduction of PAI-1 mRNA expression (p=0.0018 in diabetic, p=0.05 in non-diabetic). PAI-1 blockade promoted EPC proliferation in vitro and bypassed the inhibitory effect of TGF-β1 on cell survival (p<0.001) even in the absence of growth factors. PAI-1 blockade enhanced the migration of these cells in response to SDF-1α in (p<0.01) compared to cells treated with scrambled siRNA and improved the in vivo re-endothelialization by CD34+ cells in the I/R model. Conclusions: Our results suggest that the cytostatic activity of TGF-β1 in CD34+ cells is mediated largely through PAI-1. Blocking PAI-1 corrects multiple defects in CD34+ cells from type 2 diabetic patients. This approach may offer a promising therapeutic strategy for restoring vascular reparative function in diabetic cells and facilitate their use in autologous cell therapy. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 286 (3) ◽  
pp. E449-E455 ◽  
Author(s):  
Andrew N. Carley ◽  
Lisa M. Semeniuk ◽  
Yakhin Shimoni ◽  
Ellen Aasum ◽  
Terje S. Larsen ◽  
...  

Hearts from insulin-resistant type 2 diabetic db/db mice exhibit features of a diabetic cardiomyopathy with altered metabolism of exogenous substrates and reduced contractile performance. Therefore, the effect of chronic oral administration of 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH), a novel ligand for peroxisome proliferator-activated receptor-γ that produces insulin sensitization, to db/db mice (30 mg/kg for 6 wk) on cardiac function was assessed. COOH treatment reduced blood glucose from 27 mM in untreated db/db mice to a normal level of 10 mM. Insulin-stimulated glucose uptake was enhanced in cardiomyocytes from COOH-treated db/db hearts. Working perfused hearts from COOH-treated db/db mice demonstrated metabolic changes with enhanced glucose oxidation and decreased palmitate oxidation. However, COOH treatment did not improve contractile performance assessed with ex vivo perfused hearts and in vivo by echocardiography. The reduced outward K+ currents in diabetic cardiomyocytes were still attenuated after COOH. Metabolic changes in COOH-treated db/db hearts are most likely indirect, secondary to changes in supply of exogenous substrates in vivo and insulin sensitization.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


2000 ◽  
Vol 89 (1) ◽  
pp. 104-110 ◽  
Author(s):  
Bret H. Goodpaster ◽  
David E. Kelley ◽  
F. Leland Thaete ◽  
Jing He ◽  
Robert Ross

The purpose of this investigation was to validate that in vivo measurement of skeletal muscle attenuation (MA) with computed tomography (CT) is associated with muscle lipid content. Single-slice CT scans performed on phantoms of varying lipid concentrations revealed good concordance between attenuation and lipid concentration ( r 2 = 0.995); increasing the phantom's lipid concentration by 1 g/100 ml decreased its attenuation by ∼1 Hounsfield unit (HU). The test-retest coefficient of variation for two CT scans performed in six volunteers was 0.51% for the midthigh and 0.85% for the midcalf, indicating that the methodological variability is low. Lean subjects had significantly higher ( P < 0.01) MA values (49.2 ± 2.8 HU) than did obese nondiabetic (39.3 ± 7.5 HU) and obese Type 2 diabetic (33.9 ± 4.1 HU) subjects, whereas obese Type 2 diabetic subjects had lower MA values that were not different from obese nondiabetic subjects. There was also good concordance between MA in midthigh and midcalf ( r = 0.60, P < 0.01), psoas ( r = 0.65, P < 0.01), and erector spinae ( r = 0.77, P < 0.01) in subsets of volunteers. In 45 men and women who ranged from lean to obese (body mass index = 18.5 to 35.9 kg/m2), including 10 patients with Type 2 diabetes mellitus, reduced MA was associated with increased muscle fiber lipid content determined with histological oil red O staining ( P = −0.43, P < 0.01). In a subset of these volunteers ( n = 19), triglyceride content in percutaneous biopsy specimens from vastus lateralis was also associated with MA ( r = −0.58, P = 0.019). We conclude that the attenuation of skeletal muscle in vivo determined by CT is related to its lipid content and that this noninvasive method may provide additional information regarding the association between muscle composition and muscle function.


Sign in / Sign up

Export Citation Format

Share Document