Hydro-Ethanolic Extract of Cashew tree (Anacardium occidentale) Nut Stimulates Glucose Uptake in C2C12 muscle cells

2008 ◽  
Vol 32 (4) ◽  
pp. 364
Author(s):  
Leonard Tedong ◽  
Louis C. Martineau ◽  
Ali Benhaddou-Andaloussi ◽  
Hoda M. Eid ◽  
Pierre S. Haddad
2010 ◽  
Vol 54 (12) ◽  
pp. 1753-1762 ◽  
Author(s):  
Leonard Tedong ◽  
Padma Madiraju ◽  
Louis C. Martineau ◽  
Diane Vallerand ◽  
John T. Arnason ◽  
...  

2003 ◽  
Vol 90 (5) ◽  
pp. 957-963 ◽  
Author(s):  
Ron Ben-Abraham ◽  
Vered Gazit ◽  
Oded Vofsi ◽  
Izahar Ben-Shlomo ◽  
Abraham Z. Reznick ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1612
Author(s):  
Sun-Young Yoon ◽  
Jae Sik Yu ◽  
Ji Young Hwang ◽  
Hae Min So ◽  
Seung Oh Seo ◽  
...  

Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 μM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Karen R. Kelly ◽  
Calvin Hwang ◽  
Takhar Kasumov ◽  
Hazel Huang ◽  
John P. Kirwan

Endocrinology ◽  
2018 ◽  
Vol 159 (5) ◽  
pp. 1950-1963 ◽  
Author(s):  
Kumaravel Mohankumar ◽  
Jehoon Lee ◽  
Chia Shan Wu ◽  
Yuxiang Sun ◽  
Stephen Safe

Abstract Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3′-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3′-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole–derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3129
Author(s):  
Jyotsana Pandey ◽  
Kapil Dev ◽  
Sourav Chattopadhyay ◽  
Sleman Kadan ◽  
Tanuj Sharma ◽  
...  

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


Nitric Oxide ◽  
2009 ◽  
Vol 21 (2) ◽  
pp. 126-131 ◽  
Author(s):  
Darren C. Henstridge ◽  
Brian G. Drew ◽  
Melissa F. Formosa ◽  
Alaina K. Natoli ◽  
David Cameron-Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document