scholarly journals Exogenous long chain C14 ceramide prevents insulin‐stimulated glucose uptake in C2C12 muscle cells independent of Akt signaling

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Karen R. Kelly ◽  
Calvin Hwang ◽  
Takhar Kasumov ◽  
Hazel Huang ◽  
John P. Kirwan
2008 ◽  
Vol 32 (4) ◽  
pp. 364
Author(s):  
Leonard Tedong ◽  
Louis C. Martineau ◽  
Ali Benhaddou-Andaloussi ◽  
Hoda M. Eid ◽  
Pierre S. Haddad

2003 ◽  
Vol 90 (5) ◽  
pp. 957-963 ◽  
Author(s):  
Ron Ben-Abraham ◽  
Vered Gazit ◽  
Oded Vofsi ◽  
Izahar Ben-Shlomo ◽  
Abraham Z. Reznick ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2806 ◽  
Author(s):  
Eugene Chang ◽  
Yangha Kim

Excessive fat accumulation has been considered as a major contributing factor for muscle mitochondrial dysfunction and its associated metabolic complications. The purpose of present study is to investigate a role of vitamin D in muscle fat accumulation and mitochondrial changes. In differentiated C2C12 muscle cells, palmitic acid (PA) was pretreated, followed by incubation with 1,25-dihyroxyvitamin D (1,25(OH)2D) for 24 h. PA led to a significant increment of triglyceride (TG) levels with increased lipid peroxidation and cellular damage, which were reversed by 1,25(OH)2D. The supplementation of 1,25(OH)2D significantly enhanced PA-decreased mtDNA levels as well as mRNA levels involved in mitochondrial biogenesis such as nuclear respiratory factor 1 (NRF1), peroxisome proliferative activated receptor gamma coactivator-1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in C2C12 myotubes. Additionally, 1,25(OH)2D significantly increased ATP levels and gene expression related to mitochondrial function such as carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor α (PPARα), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD), medium-chain acyl-CoA dehydrogenase (MCAD), uncoupling protein 2 (UCP2), and UCP3 and the vitamin D pathway including 25-dihydroxyvitamin D3 24-hydroxylase (CYP24) and 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27) in PA-treated C2C12 myotubes. In addition to significant increment of sirtuin 1 (SIRT1) mRNA expression, increased activation of adenosine monophosphate-activated protein kinase (AMPK) and SIRT1 was found in 1,25(OH)2D-treated C2C12 muscle cells. Thus, we suggest that the observed protective effect of vitamin D on muscle fat accumulation and mitochondrial dysfunction in a positive manner via modulating AMPK/SIRT1 activation.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1612
Author(s):  
Sun-Young Yoon ◽  
Jae Sik Yu ◽  
Ji Young Hwang ◽  
Hae Min So ◽  
Seung Oh Seo ◽  
...  

Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 μM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.


Endocrinology ◽  
2018 ◽  
Vol 159 (5) ◽  
pp. 1950-1963 ◽  
Author(s):  
Kumaravel Mohankumar ◽  
Jehoon Lee ◽  
Chia Shan Wu ◽  
Yuxiang Sun ◽  
Stephen Safe

Abstract Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3′-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3′-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole–derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.


Phytomedicine ◽  
2018 ◽  
Vol 45 ◽  
pp. 41-48 ◽  
Author(s):  
Ilavenil Soundharrajan ◽  
Da Hye Kim ◽  
Srigopalram Srisesharam ◽  
Palaniselvam Kuppusamy ◽  
Ravikumar Sivanesan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document