scholarly journals 762. A Quantitative Imaging Tool Box for the Functional Analysis of Chimeric Antigen Receptor - T Cell Immune Synapse Helps Identify Novel Structural and Functional Features of CAR T Cells

2016 ◽  
Vol 24 ◽  
pp. S301
Author(s):  
Malini Mukherjee ◽  
Maksim Mamonkin ◽  
Nabil Ahmed ◽  
Malcolm Brenner ◽  
Jordan Orange
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 814-814 ◽  
Author(s):  
Paul J Neeson ◽  
Alexander James Davenport ◽  
Joseph A Trapani ◽  
Michael Kershaw ◽  
Ryan Cross ◽  
...  

Abstract Chimeric antigen receptor T cells (CAR T) re-directed to CD19, have induced remarkable responses in clinical trials for patients with B-cell malignancies. Patients have responded to therapy with a CAR T dose which is a fraction of the pre-existing tumor burden. Explanations for this observation include studies which show the proliferative potential of the CAR T cells (Kalos M et al Sci Transl Med 2011), as well as our recent study which showed that individual CAR T cells can serial kill tumor cells (Davenport AJ et al CIR 2015, Figure 6). Using our dual antigen receptor model (OT-I T cell receptor and 2nd generation HER-2 CAR in the same T cell, termed CAR.OTI cells), we also observed a reproducible and significantly shorter time from CAR- vs TCR-mediated activation to detachment from dying tumor cells (Davenport AJ et al CIR 2015, Figure 4D)suggesting that CAR-mediated individual killing events are actually faster. To explore how this may occur, we examined the immune synapse structure at 20 minutes of CAR.OTI CTL co-culture with tumor cells expressing the cognate antigen for either the CAR or TCR. At this timepoint, CAR.OTI CTL, activated via the TCR, formed a conventional bull's eye immune synapse with accumulation of LCK and actin clearance (Figure 1). Surprisingly, CAR.OTI CTL activated via their CAR had an immune synapse with no or diffuse LCK and small actin rings (Figure 1). At the same timepoint, CAR-activated CAR.OTI CTL conjugates with tumor cells were characterized by a microtubule organizing center (MTOC) distant from the immune synapse LCK accumulation. In contrast TCR activated CAR.OTI CTL conjugates consistently had the MTOC proximal to the LCK accumulation (Figure 2A). Despite this, CAR-mediated CAR.OTI CTL killing of tumor targets was inhibited by a protein kinase C zeta inhibitor and is, therefore, MTOC dependent (Figure 2B). The MTOC circumnavigates the activated CTL nucleus and moves to the immune synapse, bringing cytotoxic granules with it. Using time lapse live video (TLLV) microscopy, we compared CAR.OTI CTL cytotoxic granule movement when the CAR.OTI were activated via the TCR vs CAR. We showed that following CAR vs TCR activation, CAR.OTI cytotoxic granules moved with a significantly higher velocity, and had a shorter time lapse to reach the immune synapse following activation (Ca2+ flux), and a significantly shorter time to detachment from the dying tumor cell (Figure 2C). We then re-examined immune synapse formation at an earlier timepoint, to explore whether the data from Figures 1-2 could be explained by a more rapid CTL response following CAR-mediated signaling. In contrast to our observations at 20 minutes, at five minutes we showed CAR-activated CAR.OTI CTL formed conjugates with tumor targets and the immune synapse showed distinct LCK accumulation and actin clearance (Figure 3A). Finally, we explored CAR.OTI CTL signaling and showed that CAR-mediated activation induced a significantly lower number of Ca2+ fluxes, however each Ca2+ flux amplitude was not different (Figure 3B). We also examined changes in proximal (phospho-LCK, pLCK) and distal (phospho-ERK, pERK) signals in CAR- versus TCR- activated CAR.OTI cells, and showed that CAR-mediated activation induced more rapid proximal and distal activation signals (Figure 3C). In conclusion, this study showed that compared to activation by TCR ligation, T cells respond to CAR ligation with faster phospho-protein signaling, Ca2+ flux, formation of an immune synapse and a more rapid movement of the MTOC and delivery of the cytotoxic granules to kill the tumor cells. Furthermore, LFA-1 did not accumulate at the immune synapse following CAR activation, therefore, reduced adhesion may facilitate the observed rapid detachment from the dying tumor cell, and enable the CAR T to rapidly move onto the next tumor target for 'bigger, stronger, faster' killing. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 115 (9) ◽  
pp. E2068-E2076 ◽  
Author(s):  
A. J. Davenport ◽  
R. S. Cross ◽  
K. A. Watson ◽  
Y. Liao ◽  
W. Shi ◽  
...  

Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell.


Antibodies ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 41 ◽  
Author(s):  
Strohl ◽  
Naso

The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2020 ◽  
Vol 38 (17) ◽  
pp. 1938-1950 ◽  
Author(s):  
Nirali N. Shah ◽  
Steven L. Highfill ◽  
Haneen Shalabi ◽  
Bonnie Yates ◽  
Jianjian Jin ◽  
...  

PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen, represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric antigen receptor (CAR) T cells. PATIENTS AND METHODS We conducted a single-center, phase I, 3 + 3 dose-escalation trial with a large expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory CD22+ malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives included efficacy, CD22 CAR T-cell persistence, and cytokine profiling. RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were minimal and transient. Hemophagocytic lymphohistiocytosis–like manifestations were seen in 19/58 (32.8%) of subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months). Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1 to 6.5 months). Thirteen participants proceeded to stem-cell transplantation. CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy.


2019 ◽  
Vol 14 (1) ◽  
pp. 60-69
Author(s):  
Manxue Fu ◽  
Liling Tang

Background: Chimeric Antigen Receptor (CAR) T cell immunotherapy, as an innovative method for tumor immunotherapy, acquires unprecedented clinical outcomes. Genetic modification not only provides T cells with the antigen-binding function but also endows T cells with better immunological functions both in solid and hematological cancer. However, the CAR T cell therapy is not perfect because of several reasons, such as tumor immune microenvironment, and autologous limiting factors of CAR T cells. Moreover, the safety of CAR T cells should be improved.Objective:Recently many patents and publications have reported the importance of CAR T cell immunotherapy. Based on the patents about CAR T cell immunotherapy, we conclude some methods for designing the CAR which can provide information to readers.Methods:In this review, we collect recent patents and publications, summarize some specific antigens for oncotherapy from patents and enumerate some approaches to conquering immunosuppression and reinforcing the immune response of CAR T cells. We also sum up some strategies for improving the safety of CAR T cell immunotherapy.Results:CAR T cell immunotherapy as a neotype cellular immunotherapy has been proved effective in oncotherapy and authorized by FDA. Improvements in CAR designing enhance functions of CAR T cells.Conclusion:This review, summarizing antigens and approaches to overcome defects of CAR T cell immunotherapy from patents and publications, might contribute to a broad readership.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yi Zhang

Immunotherapy, especially based on chimeric antigen receptor (CAR) T cells, has achieved prominent success in the treatment of hematological malignancies. However, approximately 30-50% of patients will have disease relapse following remission after receiving CD19-targeting CAR-T cells, with failure of maintaining a long-term effect. Mechanisms underlying CAR-T therapy inefficiency consist of loss or modulation of target antigen and CAR-T cell poor persistence which mostly results from T cell exhaustion. The unique features and restoration strategies of exhausted T cells (Tex) have been well described in solid tumors. However, the overview associated with CAR-T cell exhaustion is relatively rare in hematological malignancies. In this review, we summarize the characteristics, cellular, and molecular mechanisms of Tex cells as well as approaches to reverse CAR-T cell exhaustion in hematological malignancies, providing novel strategies for immunotherapies.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2604-2604 ◽  
Author(s):  
Stephan A. Grupp ◽  
David L Porter ◽  
David T Teachey ◽  
David M. Barrett ◽  
Anne Chew ◽  
...  

Abstract Abstract 2604 We previously reported on CART19 cells expressing a chimeric antigen receptor (CAR) with intracellular activation and costimulatory domains. Infusion of these cells results in 100 to 100,000× in vivo proliferation, tumor lysis syndrome followed by durable antitumor activity, and prolonged persistence in pts with B cell tumors. Here we report that in vivo proliferation of CART19 cells and potent anti-tumor activity is associated with CRS, leading to hemophagocytic lymphohistiocytosis (HLH), also termed MAS. We propose that MAS/HLH is a unique biomarker that is associated with and may be required for potent anti-tumor activity. Autologous T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3-zeta, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into ALL or CLL pts with persistent disease after 2–8 prior treatments. CART19 anti ALL activity was also modeled in a xenograft mouse model with high level of human ALL/human T cell engraftment and simultaneous detection of CAR T cells and ALL using 2-color bioluminescent imaging. We describe updated results of 10 pts who received CART19 cells elsewhere at ASH (Porter, et al), including 9 pts with CLL and 1 pediatric pt with relapsed refractory ALL. 6/9 evaluable pts had a CR or PR, including 4 sustained CRs. While there was no acute infusional toxicity, all responding pts also developed CRS. All had high fevers, as well as grade 3 or 4 hypotension/hypoxia. CRS preceded peak blood expression of CART19 cells, and then increased in intensity until the CART19 cell peak (D10–31 after infusion). The ALL pt experienced the most significant toxicity, with grade 4 hypotension and respiratory failure. Steroid therapy on D6 resulted in no improvement. On D9, noting high levels of TNFa and IL-6 (peak increases above baseline: IFNg at 6040x; IL-6 at 988x; IL-2R at 56x, IL-2 at 163× and TNFa at 17x), we administered TNFa and IL-6 antagonists entanercept and toc. This resulted in resolution of fever and hypotension within 12hr and a rapid wean from ventilator support to room air. These interventions had no apparent impact on CART19 cell expansion or efficacy: peak of CAR T cells (2539 CAR+ cells/uL; 77% of CD3 cells by flow) occurred on D11, and D23 bone marrow showed CR with negative MRD, compared to her initial on-study marrow which showed 65% blasts. Although she had no history of CNS ALL, spinal fluid showed detectable CART19 cells (21 lymphs/mcL; 78% CAR+). At 4mo post infusion, this pt remains in CR, with 17 CART19 cells/uL in the blood and 31% CAR+ CD3 cells in the marrow. Clinical assessment of subsequent responding patients shows all had evidence of MAS/HLH including dramatic elevations of ferritin and histologic evidence of HLH. Peak ferritin levels range from 44,000 to 605,000, preceding and continuing with peak T cell proliferation. Other consistent findings include rapid onset hepatosplenomegaly unrelated to disease and moderate DIC. Subsequently, 3 CLL patients have also been treated with toc, also with prompt and striking resolution of high fevers, hypotension and hypoxia. 1 received toc on D10 and achieved a CR accompanied by CART19 expansion. 1 had rapid resolution of CRS following toc administration on day 9 and follow up for response is too short. A 3rd CLL pt received toc on D3 for early fevers and had no CART-19 proliferation and no response. To model the timing of cytokine blockade, xenografts using bioluminescent primary pediatric ALL were established and then treated with extra cells from the clinical manufacture. The CART19 cells proliferated and resulted in prolonged survival. Cytokine blockade prior to T cell infusion with toc and/or etanercept abrogated disease control with less in vivo proliferation of infused CART19 cells, confirming the result seen in the one pt given early toc (D3). The optimal time and threshold to trigger cytokine blockade is currently being tested in these models. CART19 T cells can produce massive in-vivo expansion, long-term persistence, and anti-tumor efficacy, but can also induce significant CRS with features suggestive of MAS/HLH that responds rapidly to cytokine blockade. Given prior to initiation of significant CART19 proliferation, blockade of TNFa and/or IL-6 may interfere with proliferation and effector function, but if given at a point where cell proliferation is underway, toc may ameliorate the symptoms that we have observed correlate with robust clinical responses. Disclosures: Off Label Use: tocilizumab for cell therapy toxicity. Levine:University of Pennsylvania: financial interest due to intellectual property and patents in the field of cell and gene therapy. Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight Patents & Royalties; TxCell: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kalos:University of Pennsylvania: Patents & Royalties. June:Novartis: Research Funding, institution owned patents have been licensed by Novartis, institution owned patents have been licensed by Novartis Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document