scholarly journals 251. TALENs Facilitate Targeted Genome Editing in Human Cells With High Specificity and Low Cytotoxicity

2014 ◽  
Vol 22 ◽  
pp. S95
2014 ◽  
Vol 42 (10) ◽  
pp. 6762-6773 ◽  
Author(s):  
Claudio Mussolino ◽  
Jamal Alzubi ◽  
Eli J. Fine ◽  
Robert Morbitzer ◽  
Thomas J. Cradick ◽  
...  

2019 ◽  
Author(s):  
Jacob Lamberth ◽  
Laura Daley ◽  
Pachai Natarajan ◽  
Stanislav Khoruzhenko ◽  
Nurit Becker ◽  
...  

ABSTRACTCRISPR technology has opened up many diverse genome editing possibilities in human somatic cells, but has been limited in the therapeutic realm by both potential off-target effects and low genome modification efficiencies. Recent advancements to combat these limitations include delivering Cas9 nucleases directly to cells as highly purified ribonucleoproteins (RNPs) instead of the conventional plasmid DNA and RNA-based approaches. Here, we extend RNP-based delivery in cell culture to a less characterized CRISPR format which implements paired Cas9 nickases. The use of paired nickase Cas9 RNP system, combined with a GMP-compliant non-viral delivery technology, enables editing in human cells with high specificity and high efficiency, a development that opens up the technology for further exploration into a more therapeutic role.


2021 ◽  
Vol 22 (14) ◽  
pp. 7456
Author(s):  
Mousa A. Alghuthaymi ◽  
Aftab Ahmad ◽  
Zulqurnain Khan ◽  
Sultan Habibullah Khan ◽  
Farah K. Ahmed ◽  
...  

Rapid developments in the field of plant genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems necessitate more detailed consideration of the delivery of the CRISPR system into plants. Successful and safe editing of plant genomes is partly based on efficient delivery of the CRISPR system. Along with the use of plasmids and viral vectors as cargo material for genome editing, non-viral vectors have also been considered for delivery purposes. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, and protein- and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have a decreased immune response, an advantage over viral vectors, and offer additional flexibility in their design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. This review is dedicated to describing the delivery methods of CRISPR system into plants with emphasis on the use of non-viral vectors.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xianhang Wang ◽  
Mingxing Tu ◽  
Ya Wang ◽  
Wuchen Yin ◽  
Yu Zhang ◽  
...  

AbstractThe CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) system is a powerful tool for targeted genome editing, with applications that include plant biotechnology and functional genomics research. However, the specificity of Cas9 targeting is poorly investigated in many plant species, including fruit trees. To assess the off-target mutation rate in grapevine (Vitis vinifera), we performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants. In total, we identified between 202,008 and 272,397 single nucleotide polymorphisms (SNPs) and between 26,391 and 55,414 insertions/deletions (indels) in the seven Cas9-edited grapevine plants compared with the three WT plants. Subsequently, 3272 potential off-target sites were selected for further analysis. Only one off-target indel mutation was identified from the WGS data and validated by Sanger sequencing. In addition, we found 243 newly generated off-target sites caused by genetic variants between the Thompson Seedless cultivar and the grape reference genome (PN40024) but no true off-target mutations. In conclusion, we observed high specificity of CRISPR/Cas9 for genome editing of grapevine.


2019 ◽  
Vol 37 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Tianwen Li ◽  
Linwen Zhu ◽  
Bingxiu Xiao ◽  
Zhaohui Gong ◽  
Qi Liao ◽  
...  

2020 ◽  
Author(s):  
Regina Tkach ◽  
Natalia Nikitchina ◽  
Nikita Shebanov ◽  
Vladimir Mekler ◽  
Egor Ulashchik ◽  
...  

ABSTRACTCRISPR RNAs (crRNAs) directing target DNA cleavage by type V-A Cas12a nucleases consist of repeat-derived 5’-scaffold moiety and 3’-spacer moiety. We demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by Cas12a ortholog from Acidaminococcus sp (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer part only, while crRNAs split into two individual moieties (scaffold and spacer RNAs) catalyzed highly specific and efficient cleavage of target DNA. Our data also indicate that AsCas12a combined with split crRNA forms a stable complex with the target. These observations were also confirmed in lysates of human cells expressing AsCas12a. The ability of the AsCas12a nuclease to be programmed with split crRNAs opens new lines of inquiry into the mechanisms of target recognition and cleavage and will further facilitate genome editing techniques based on Cas12a nucleases.


2019 ◽  
Vol 116 (42) ◽  
pp. 20959-20968 ◽  
Author(s):  
Sundaram Acharya ◽  
Arpit Mishra ◽  
Deepanjan Paul ◽  
Asgar Hussain Ansari ◽  
Mohd. Azhar ◽  
...  

Genome editing using the CRISPR/Cas9 system has been used to make precise heritable changes in the DNA of organisms. Although the widely used Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants have been efficiently harnessed for numerous gene-editing applications across different platforms, concerns remain regarding their putative off-targeting at multiple loci across the genome. Here we report that Francisella novicida Cas9 (FnCas9) shows a very high specificity of binding to its intended targets and negligible binding to off-target loci. The specificity is determined by its minimal binding affinity with DNA when mismatches to the target single-guide RNA (sgRNA) are present in the sgRNA:DNA heteroduplex. FnCas9 produces staggered cleavage, higher homology-directed repair rates, and very low nonspecific genome editing compared to SpCas9. We demonstrate FnCas9-mediated correction of the sickle cell mutation in patient-derived induced pluripotent stem cells and propose that it can be used for precise therapeutic genome editing for a wide variety of genetic disorders.


Author(s):  
Kaiwen Ivy Liu ◽  
Muhammad Nadzim Bin Ramli ◽  
Norfala-Aliah Binte Sutrisnoh ◽  
Meng How Tan

Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1220 ◽  
Author(s):  
Juncai Hou ◽  
Zhijing Liu ◽  
Songsong Cao ◽  
Haimei Wang ◽  
Chenggang Jiang ◽  
...  

2017 ◽  
Vol 14 (6) ◽  
pp. 615-620 ◽  
Author(s):  
Daniel Agudelo ◽  
Alexis Duringer ◽  
Lusiné Bozoyan ◽  
Caroline C Huard ◽  
Sophie Carter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document