scholarly journals 710. Sonoporation of Plasmid DNA Driven by Glucagon Promoter to Pancreatic Islet a-Cell for Diabetes Gene Therapy

2011 ◽  
Vol 19 ◽  
pp. S271
Nanoscale ◽  
2021 ◽  
Author(s):  
Zhe Sun ◽  
Jinhai Huang ◽  
Linjia Su ◽  
Jing Li ◽  
Fangzheng Qi ◽  
...  

Using cell-penetrating peptides (CPPs), typically HIV-Tat, to deliver the therapeutic gene for cancer treatment has being hampered by low efficient delivery and complicated uptake route of plasmid DNA (pDNA). On...


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tugba Mehmetoglu-Gurbuz ◽  
Rose Yeh ◽  
Himanshu Garg ◽  
Anjali Joshi

Abstract Background Gene therapy approaches using hematopoietic stem cells to generate an HIV resistant immune system have been shown to be successful. The deletion of HIV co-receptor CCR5 remains a viable strategy although co-receptor switching to CXCR4 remains a major pitfall. To overcome this, we designed a dual gene therapy strategy that incorporates a conditional suicide gene and CCR5 knockout (KO) to overcome the limitations of CCR5 KO alone. Methods A two-vector system was designed that included an integrating lentiviral vector that expresses a HIV Tat dependent Thymidine Kinase mutant SR39 (TK-SR39) and GFP reporter gene. The second non-integrating lentiviral (NIL) vector expresses a CCR5gRNA-CRISPR/Cas9 cassette and HIV Tat protein. Results Transduction of cells sequentially with the integrating followed by the NIL vector allows for insertion of the conditional suicide gene, KO of CCR5 and transient expression of GFP to enrich the modified cells. We used this strategy to modify TZM cells and generate a cell line that was resistant to CCR5 tropic viruses while permitting infection of CXCR4 tropic viruses which could be controlled via treatment with Ganciclovir. Conclusions Our study demonstrates proof of principle that a combination gene therapy for HIV is a viable strategy and can overcome the limitation of editing CCR5 gene alone.


1998 ◽  
Vol 87 (6) ◽  
pp. 763-768 ◽  
Author(s):  
Dominic J. Wells ◽  
Jake Maule ◽  
Jill McMahon ◽  
Roger Mitchell ◽  
Elsie Damien ◽  
...  

Cytotherapy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 1486-1494 ◽  
Author(s):  
DAVID L. DIGIUSTO ◽  
KATHRYN MELSOP ◽  
RASHI SRIVASTAVA ◽  
CHY-ANH T. TRAN

2005 ◽  
Vol 52 (3) ◽  
pp. 703-711 ◽  
Author(s):  
Jochen Urthaler ◽  
Wolfgang Buchinger ◽  
Roman Necina

Gene therapy and genetic vaccines promise to revolutionize the treatment of inherited and acquired diseases. Since viral vectors are generally associated with numerous disadvantages when applied to humans, the administration of naked DNA, or DNA packed into lipo- or polyplexes emerge as viable alternatives. To satisfy the increasing demand for pharmaceutical grade plasmids we developed a novel economic downstream process which overcomes the bottlenecks of common lab-scale techniques and meets all regulatory requirements. After cell lysis by an in-house developed gentle, automated continuous system the sequence of hydrophobic interaction, anion exchange and size exclusion chromatography guarantees the separation of impurities as well as undesired plasmid isoforms. After the consecutive chromatography steps, adjustment of concentration and final filtration are carried out. The final process was proven to be generally applicable and can be used from early clinical phases to market-supply. It is scaleable and free of animal-derived substances, detergents (except lysis) and organic solvents. The process delivers high-purity plasmid DNA of homogeneities up to 98% supercoiled form at a high yield in any desired final buffer.


2011 ◽  
Vol 21 ◽  
pp. 230-242 ◽  
Author(s):  
F Wegman ◽  
◽  
A Bijenhof ◽  
L Schuijff ◽  
FC Öner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document