scholarly journals 1041. Cell Density and Viral Vector Load Are Determinant Factors for Ex Vivo Lentiviral Transduction Efficiency of Hematopoietic Stem Cells

2007 ◽  
Vol 15 ◽  
pp. S397
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5147-5147
Author(s):  
Nadia D. Sutherland ◽  
H. Trent Spencer

Achieving high level transduction of murine hematopoietic stem cells (HSCs) using lentiviral vectors has been a challenge for many laboratories. We investigated the efficiency of lentiviral transduction of murine stem cell antigen-1+ (sca-1+) cells with and without cyclosporine A (CSA), which has previously been shown to increase the transduction efficiency of other types of murine cells. Sca-1+ cells were isolated from C57BL/6 mice and transduced with lentiviral vectors encoding green fluorescent protein (GFP) at various multiplicity of infections (MOI) and with various concentrations of CSA. Twenty-four hours after a single transduction, 1.5 x 104 or 4.5 x 104 cells were plated in methylcellulose containing the appropriate cytokines for progenitor cell growth, and colonies were counted on days 8–12. In the absence of CSA only 4± 2% of progenitor colonies were GFP+. However, when CSA (10 μM) was added within 3 hours of sca-1 cell isolation, transduction efficiency increased to 44 ± 6%. Although the transduction efficiency increased 10-fold, the number of progenitor colonies significantly decreased when CSA was added (up to 90% decrease). Lower concentrations of CSA (e.g. 1 μM) were less toxic to sca-1+ cells but resulted in inconsistent transduction efficiencies. We next determined the effects of CSA when applied at various times after sca-1 cell isolation. We found that the number of sca-1+ cells decreased within the first two days of culture but then begin to increase on day 3, and by day 7 there is a 7-fold increase compared to the number of cells originally isolated. Cells cultured with virus alone had an average increase of 3.5-fold on day 7, but only 3% of cells cultured in CSA survived to day 7. Cells cultured with both virus and CSA had no viability on day 7. However, by delaying the addition of virus and CSA until day 3, a 1.4-fold increase in sca-1+ cells was observed by day 7, which was achieved without affecting the efficiency of transduction. Sca-1+ cells were then transduced with the lentiviral vector in the presence of CSA and transplanted into transgenic sickle mice using a nonmyeloablative conditioning regimen that consisted of busulfan (25 mg/kg) administered on day -1 and costimulation blockade with CTLA-4Ig and anti-CD40 ligand administered on days 0, 2, 4, and 7. We were able to achieve donor engraftment levels of 98% with a 40% engraftment of gene-modified cells. These results show that using CSA in lentiviral transductions of murine HSCs can be an effective method for increasing overall transduction efficiency, and may aid in the use of lentiviral vectors in animal studies.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2020 ◽  
Vol 15 (3) ◽  
pp. 250-262
Author(s):  
Maryam Islami ◽  
Fatemeh Soleimanifar

Transplantation of hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB) has been taken into account as a therapeutic approach in patients with hematologic malignancies. Unfortunately, there are limitations concerning HSC transplantation (HSCT), including (a) low contents of UCB-HSCs in a single unit of UCB and (b) defects in UCB-HSC homing to their niche. Therefore, delays are observed in hematopoietic and immunologic recovery and homing. Among numerous strategies proposed, ex vivo expansion of UCB-HSCs to enhance UCB-HSC dose without any differentiation into mature cells is known as an efficient procedure that is able to alter clinical treatments through adjusting transplantation-related results and making them available. Accordingly, culture type, cytokine combinations, O2 level, co-culture with mesenchymal stromal cells (MSCs), as well as gene manipulation of UCB-HSCs can have effects on their expansion and growth. Besides, defects in homing can be resolved by exposing UCB-HSCs to compounds aimed at improving homing. Fucosylation of HSCs before expansion, CXCR4-SDF-1 axis partnership and homing gene involvement are among strategies that all depend on efficiency, reasonable costs, and confirmation of clinical trials. In general, the present study reviewed factors improving the expansion and homing of UCB-HSCs aimed at advancing hematopoietic recovery and expansion in clinical applications and future directions.


2021 ◽  
Vol 20 ◽  
pp. 451-462
Author(s):  
Suvd Byambaa ◽  
Hideki Uosaki ◽  
Tsukasa Ohmori ◽  
Hiromasa Hara ◽  
Hitoshi Endo ◽  
...  

Author(s):  
Valentina Orticelli ◽  
Andrea Papait ◽  
Elsa Vertua ◽  
Patrizia Bonassi Signoroni ◽  
Pietro Romele ◽  
...  

2021 ◽  
Vol 143 ◽  
pp. 112102
Author(s):  
Nopmullee Tanhuad ◽  
Umnuaychoke Thongsa-ad ◽  
Nareerat Sutjarit ◽  
Ploychompoo Yoosabai ◽  
Wittaya Panvongsa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document