2P-0395 Surfactant protein D of the innate immune defense is negatively associated with obesity

2003 ◽  
Vol 4 (2) ◽  
pp. 125
Author(s):  
U. Holmskov ◽  
G. Lyster ◽  
J. Hjelmborg ◽  
R. Leth-Larsen ◽  
V. Moeller ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Raquel Arroyo ◽  
Paul S. Kingma

AbstractSurfactant protein D (SP-D) is a collectin protein synthesized by alveolar type II cells in the lungs. SP-D participates in the innate immune defense of the lungs by helping to clear infectious pathogens and modulating the immune response. SP-D has shown an anti-inflammatory role by down-regulating the release of pro-inflammatory mediators in different signaling pathways such as the TLR4, decreasing the recruitment of inflammatory cells to the lung, and modulating the oxidative metabolism in the lungs. Recombinant human SP-D (rhSP-D) has been successfully produced mimicking the structure and functions of native SP-D. Several in vitro and in vivo experiments using different animal models have shown that treatment with rhSP-D reduces the lung inflammation originated by different insults, and that rhSP-D could be a potential treatment for bronchopulmonary dysplasia (BPD), a rare disease for which there is no effective therapy up to date. BPD is a complex disease in preterm infants whose incidence increases with decreasing gestational age at birth. Lung inflammation, which is caused by different prenatal and postnatal factors like infections, lung hyperoxia and mechanical ventilation, among others, is the key player in BPD. Exacerbated inflammation causes lung tissue injury that results in a deficient gas exchange in the lungs of preterm infants and frequently leads to long-term chronic lung dysfunction during childhood and adulthood. In addition, low SP-D levels and activity in the first days of life in preterm infants have been correlated with a worse pulmonary outcome in BPD. Thus, SP-D mediated functions in the innate immune response could be critical aspects of the pathogenesis in BPD and SP-D could inhibit lung tissue injury in this preterm population. Therefore, administration of rhSP-D has been proposed as promising therapy that could prevent BPD.


2016 ◽  
Vol 310 (9) ◽  
pp. L868-L879 ◽  
Author(s):  
Jason C. Gardner ◽  
Huixing Wu ◽  
John G. Noel ◽  
Benjamin J. Ramser ◽  
Lori Pitstick ◽  
...  

Keratinocyte growth factor (KGF) is an epithelial mitogen that has been reported to protect the lungs from a variety of toxic and infectious insults. In prior studies we found that recombinant human KGF accelerates clearance of bacteria from the murine lung by augmenting the function of alveolar macrophages (AM). In this study we tested the hypothesis that endogenous KGF plays a role in the maintenance of innate pulmonary defense against gram-negative bacterial infections. KGF-deficient mice exhibited delayed clearance of Escherichia coli from the lungs, attenuated phagocytosis by AM, and decreased antimicrobial activity in bronchoalveolar lavage (BAL) fluid, due in part to reductions in levels of surfactant protein A, surfactant protein D, and lysozyme. These immune deficits were accompanied by lower alveolar type II epithelial cell counts and reduced alveolar type II epithelial cell expression of collectin and lysozyme genes on a per cell basis. No significant between-group differences were detected in selected inflammatory cytokines or BAL inflammatory cell populations at baseline or after bacterial challenge in the wild-type and KGF-deficient mice. A single intranasal dose of recombinant human KGF reversed defects in bacterial clearance, AM function, and BAL fluid antimicrobial activity. We conclude that KGF supports alveolar innate immune defense through maintenance of alveolar antimicrobial protein levels and functions of AM. Together these data demonstrate a role for endogenous KGF in maintenance of normal pulmonary innate immune function.


Viruses ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
Anne-Laure Favier ◽  
Olivier Reynard ◽  
Evelyne Gout ◽  
Martin van Eijk ◽  
Henk P. Haagsman ◽  
...  

Since the largest 2014–2016 Ebola virus disease outbreak in West Africa, understanding of Ebola virus infection has improved, notably the involvement of innate immune mediators. Amongst them, collectins are important players in the antiviral innate immune defense. A screening of Ebola glycoprotein (GP)-collectins interactions revealed the specific interaction of human surfactant protein D (hSP-D), a lectin expressed in lung and liver, two compartments where Ebola was found in vivo. Further analyses have demonstrated an involvement of hSP-D in the enhancement of virus infection in several in vitro models. Similar effects were observed for porcine SP-D (pSP-D). In addition, both hSP-D and pSP-D interacted with Reston virus (RESTV) GP and enhanced pseudoviral infection in pulmonary cells. Thus, our study reveals a novel partner of Ebola GP that may participate to enhance viral spread.


2020 ◽  
Vol 104 ◽  
pp. 506-516
Author(s):  
Jingguang Wei ◽  
Chen Li ◽  
Jisheng Ou ◽  
Xin Zhang ◽  
Zetian Liu ◽  
...  

2017 ◽  
Vol 70 ◽  
pp. 13-24 ◽  
Author(s):  
Liang Lu ◽  
Xu Wang ◽  
Sizhong Wu ◽  
Xuejiao Song ◽  
Ziqi Zou ◽  
...  

2016 ◽  
Vol 230 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Martin N. Møller ◽  
Svend Kirkeby ◽  
Per Cayé-Thomasen

2017 ◽  
Vol 313 (5) ◽  
pp. F1061-F1067 ◽  
Author(s):  
Hu Peng ◽  
Jeffrey M. Purkerson ◽  
Andy L. Schwaderer ◽  
George J. Schwartz

Intercalated cells of the collecting duct (CD) are critical for acid-base homeostasis and innate immune defense of the kidney. Little is known about the impact of acidosis on innate immune defense in the distal nephron. Urinary tract infections are mainly due to Escherichia coli and are an important risk factor for development of chronic kidney disease. While the effect of urinary pH on growth of E. coli is well established, in this study, we demonstrate that acidosis increases urine antimicrobial activity due, at least in part, to induction of cathelicidin expression within the CD. Acidosis was induced in rabbits by adding NH4Cl to the drinking water and reducing food intake over 3 days or by casein supplementation. Microdissected CDs were examined for cathelicidin mRNA expression and antimicrobial activity, and cathelicidin protein levels in rabbit urine were measured. Cathelicidin expression in CD cells was detected in kidney sections. CDs from acidotic rabbits expressed three times more cathelicidin mRNA than those isolated from normal rabbits. Urine from acidotic rabbits had significantly more antimicrobial activity (vs. E. coli) than normal urine, and most of this increased activity was blocked by cathelicidin antibody. The antibody had little effect on antimicrobial activity of normal urine. Urine from acidotic rabbits had at least twice the amount of cathelicidin protein as did normal urine. We conclude that metabolic acidosis not only stimulates CD acid secretion but also induces expression of cathelicidin and, thereby, enhances innate immune defense against urinary tract infections via induction of antimicrobial peptide expression.


Sign in / Sign up

Export Citation Format

Share Document