High-surface-area porous carbons produced by the mild KOH activation of a chitosan hydrochar and their CO2 capture

2021 ◽  
Vol 36 (6) ◽  
pp. 1081-1090
Author(s):  
Jing Wang ◽  
Shuang Chen ◽  
Jia-yu Xu ◽  
Li-cheng Liu ◽  
Ji-cheng Zhou ◽  
...  
Carbon ◽  
2022 ◽  
Vol 188 ◽  
pp. 545
Author(s):  
Jing Wang ◽  
Shuang Chen ◽  
Jia-yu Xu ◽  
Li-cheng Liu ◽  
Ji-cheng Zhou ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77629-77636 ◽  
Author(s):  
Xiaotian Zhang ◽  
Xinwei Cui ◽  
Weixing Chen

High surface area porous carbons (up to 3768 m2 g−1) were prepared from as-synthesized polyaniline (PANI) by KOH activation. It is found that proper preheating before activation plays an important role in obtaining carbons with high BET surface area.


MethodsX ◽  
2021 ◽  
pp. 101464
Author(s):  
Yichen Wu ◽  
Nan Zhang ◽  
Charles-François de Lannoy

2021 ◽  
Author(s):  
Gurwinder Singh ◽  
Rohan Bahadur ◽  
Ajanya Maria Ruban ◽  
Jefrin Marykala Davidraj ◽  
Dawei Su ◽  
...  

Nanoporous biocarbons derived from waste biomass have created significant attention owing to their great potential for energy storage and conversion and water purification. However, the fabrication technology for these materials...


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1962
Author(s):  
Mahboubeh Nabavinia ◽  
Baishali Kanjilal ◽  
Noahiro Fujinuma ◽  
Amos Mugweru ◽  
Iman Noshadi

To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.


2017 ◽  
Vol 1 (6) ◽  
pp. 1414-1424 ◽  
Author(s):  
Michael Cox ◽  
Robert Mokaya

Mesoporous carbons (with up to 95% of pore volume from mesopores) with surface area and pore volume of ∼4000 m2 g−1 and ∼3.6 cm3 g−1, respectively, are excellent CO2 absorbers under pre combustion conditions and can store 55 mmol g−1 (i.e., 2.42 g g−1) or 930 g l−1 at 25 °C and 50 bar.


2019 ◽  
Vol 43 (48) ◽  
pp. 19372-19378 ◽  
Author(s):  
Jianyu Huang ◽  
Simin Liu ◽  
Zifang Peng ◽  
Zhuoxian Shao ◽  
Yuanyuan Zhang ◽  
...  

The synergistic effects of high surface area and abundant heteroatoms make porous carbons superior electrode materials.


2020 ◽  
Vol 518 ◽  
pp. 146265 ◽  
Author(s):  
Liu Wan ◽  
Rui Xiao ◽  
Jiaxing Liu ◽  
Yan Zhang ◽  
Jian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document