scholarly journals Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation: A case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin

2014 ◽  
Vol 41 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Mingjie LIU ◽  
Zhen LIU ◽  
Jingjing LIU ◽  
Wenqi ZHU ◽  
Yanhui HUANG ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2242 ◽  
Author(s):  
Zhihao Jiang ◽  
Zhiqiang Mao ◽  
Yujiang Shi ◽  
Daxing Wang

Pore structure determines the ability of fluid storage and migration in rocks, expressed as porosity and permeability in the macroscopic aspects, and the pore throat radius in the microcosmic aspects. However, complex pore structure and strong heterogeneity make the accurate description of the tight sandstone reservoir of the Triassic Yanchang Formation, Ordos Basin, China still a problem. In this paper, mercury injection capillary pressure (MICP) parameters were applied to characterize the heterogeneity of pore structure, and three types of pore structure were divided, from high to low quality and defined as Type I, Type II and Type III, separately. Then, the multifractal analysis based on the MICP data was conducted to investigate the heterogeneity of the tight sandstone reservoir. The relationships among physical properties, MICP parameters and a series of multifractal parameters have been detailed analyzed. The results showed that four multifractal parameters, singularity exponent parameter (αmin), generalized dimension parameter (Dmax), information dimension (D1), and correlation dimension (D2) were in good correlations with the porosity and permeability, which can well characterize the pore structure and reservoir heterogeneity of the study area, while the others didn’t respond well. Meanwhile, there also were good relationships between these multifractal and MICP parameters.


2019 ◽  
Vol 38 (2) ◽  
pp. 348-371 ◽  
Author(s):  
Siyi Fu ◽  
Zhiwei Liao ◽  
Anqing Chen ◽  
Hongde Chen

The Chang-8 and Chang-6 members of the Upper Triassic Yanchang Formation (lower part) are regarded as the main oil producing members of the Ordos Basin. Recently, new hydrocarbon discoveries have been made in the upper part of the Yanchang Formation (e.g., Chang-3) in the southwestern Ordos Basin, implying that this interval also has a good potential for hydrocarbon exploration. However, studies on the origin of the high-quality reservoir, hydrocarbon migration, and accumulation patterns remain insufficient. In this study, integrated petrological, mineralogical, and fluid inclusion tests are employed to evaluate reservoir characteristics, and reconstruct the history of hydrocarbon migration and accumulation during oil and gas reservoir formation. The results reveal that the Yanchang Formation is characterized by low porosity (8 − 14%), medium permeability (0.5 − 5 mD), and strong heterogeneity; the reservoir properties are controlled by secondary porosity. Two types of dissolution are recognized in the present study. Secondary pore formation in the lower part of the formation is related to organic acid activity, while dissolution in the upper part is mainly influenced by atmospheric fresh water associated with the unconformity surface. The Yanchang Formation underwent hydrocarbon charging in three phases: the early Early Cretaceous, late Early Cretaceous, and middle Late Cretaceous. A model for hydrocarbon migration and accumulation in the Yanchang reservoirs was established based on the basin evolution. We suggest that hydrocarbon accumulation occurred at the early stage, and that hydrocarbons migrated into the upper part of the Yanchang Formation by way of tectonic fractures and overpressure caused by continuous and episodic hydrocarbon expulsion during secondary migration, forming potential oil reservoirs during the later stage.


Sign in / Sign up

Export Citation Format

Share Document