On the interaction between small- and large-scale convection and postglacial rebound flow in a power-law mantle

1987 ◽  
Vol 84 (2-3) ◽  
pp. 254-262 ◽  
Author(s):  
Harro Schmeling
2015 ◽  
Vol 22 (4) ◽  
pp. 361-369 ◽  
Author(s):  
L. K. Feschenko ◽  
G. M. Vodinchar

Abstract. Inversion of the magnetic field in a model of large-scale αΩ-dynamo with α-effect with stochastic memory is under investigation. The model allows us to reproduce the main features of the geomagnetic field reversals. It was established that the polarity intervals in the model are distributed according to the power law. Model magnetic polarity timescale is fractal. Its dimension is consistent with the dimension of the real geomagnetic polarity timescale.


2005 ◽  
Vol 10 (4) ◽  
pp. 469-477 ◽  
Author(s):  
Zhiyuan Song ◽  
Darning Huang ◽  
Masae Shiyomi ◽  
Yusheng Wang ◽  
Shiqeo Takahashi ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1257 ◽  
Author(s):  
Shi Chen ◽  
Hong Zhou ◽  
Jingang Lai ◽  
Yiwei Zhou ◽  
Chang Yu

The ideal distributed network composed of distributed generations (DGs) has unweighted and undirected interactions which omit the impact of the power grid structure and actual demand. Apparently, the coupling relationship between DGs, which is determined by line impedance, node voltage, and droop coefficient, is generally non-homogeneous. Motivated by this, this paper investigates the phase synchronization of an islanded network with large-scale DGs in a non-homogeneous condition. Furthermore, we explicitly deduce the critical coupling strength formula for different weighting cases via the synchronization condition. On this basis, three cases of Gaussian distribution, power-law distribution, and frequency-weighted distribution are analyzed. A synthetical analysis is also presented, which helps to identify the order parameter. Finally, this paper employs the numerical simulation methods to test the effectiveness of the critical coupling strength formula and the superiority over the power-law distribution.


2020 ◽  
Author(s):  
Xiaocan Li ◽  
Fan Guo

<p>Magnetic reconnection is a primary driver of magnetic energy release and particle acceleration processes in space and astrophysical plasmas. Solar flares are a great example where observations have suggested that a large fraction of magnetic energy is converted into nonthermal particles and radiation. One of the major unsolved problems in reconnection studies is nonthermal particle acceleration. In the past decade or two, 2D kinetic simulations have been widely used and have identified several acceleration mechanisms in reconnection. Recent 3D simulations have shown that the reconnection layer naturally generates magnetic turbulence. Here we report our recent progresses in building a macroscopic model that includes these physics for explaining particle acceleration during solar flares. We show that, for sufficient large systems, high-energy particle acceleration processes can be well described as flow compression and shear. By means of 3D kinetic simulations, we found that the self-generated turbulence is essential for the formation of power-law electron energy spectrum in non-relativistic reconnection. Based on these results, we then proceed to solve an energetic particle transport equation in a compressible reconnection layer provided by high-Lundquist-number MHD simulations. Due to the compression effect, particles are accelerated to high energies and develop power-law energy distributions. The power-law index and maximum energy are both comparable to solar flare observations. This study clarifies the nature of particle acceleration in large-scale reconnection sites and initializes a framework for studying large-scale particle acceleration during solar flares.</p>


2003 ◽  
Vol 31 (6) ◽  
pp. 1491-1496 ◽  
Author(s):  
A. Thomas ◽  
R. Cannings ◽  
N.A.M. Monk ◽  
C. Cannings

We present a simple model for the underlying structure of protein–protein pairwise interaction graphs that is based on the way in which proteins attach to each other in experiments such as yeast two-hybrid assays. We show that data on the interactions of human proteins lend support to this model. The frequency of the number of connections per protein under this model does not follow a power law, in contrast to the reported behaviour of data from large-scale yeast two-hybrid screens of yeast protein–protein interactions. Sampling sub-graphs from the underlying graphs generated with our model, in a way analogous to the sampling performed in large-scale yeast two-hybrid searches, gives degree distributions that differ subtly from the power law and that fit the observed data better than the power law itself. Our results show that the observation of approximate power law behaviour in a sampled sub-graph does not imply that the underlying graph follows a power law.


2013 ◽  
Vol 838-841 ◽  
pp. 3260-3267
Author(s):  
Qi Chang Yao ◽  
Xin Feng ◽  
Qi Ming Sun

In online shopping, studies on consumer reviews are mostly based on the Attitude Change Model. Illustrated from the perspective of perceived trustworthiness, however, it is not easy to measure and characterize the subjective perception of consumers. Starting from the inherent property of online reviews and based on the real data of 360buy which is the domestic large-scale B2C commerce website in China, this paper focuses on the interval distribution of consumer reviews and the data for statistical analysis. Research finds that the distribution of reviews interval can be depicted by the power-law function and there is a monotonically increasing relationship between power-exponent and the customers concerns with the commodity, the higher exponent, the attention consumer get. The findings give an objective basis to judge the credibility of online reviews. The relationship between power-exponent and the consumer attention has demonstrated the vital role of consumer attention in online shopping, and then the double parity between attention and exponent will effectively regulate the e-commerce market environment and promote its healthy operation. Tech Publications.


1989 ◽  
Vol 111 (3) ◽  
pp. 331-336 ◽  
Author(s):  
J. T. Park ◽  
R. J. Mannheimer ◽  
T. A. Grimley ◽  
T. B. Morrow

An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Experiments were conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm. The transparent slurry formulated for these experiments from silica, mineral oil, and Stoddard solvent exhibited a yield-power-law behavior from concentric-cylinder viscometer measurements. The velocity profile for laminar flow from laser Doppler velocimeter (LDV) measurements had a central plug flow region, and it was in agreement with theory. The range of the transition region was narrower than that for a Newtonian fluid. The mean velocity profile for turbulent flow was close to a 1/7 power-law velocity profile. The rms longitudinal velocity profile was also similar to a classical turbulent pipe flow experiment for a Newtonian fluid; however, the rms tangential velocity profile was significantly different.


2000 ◽  
Vol 416 ◽  
pp. 239-267 ◽  
Author(s):  
J. BEC ◽  
U. FRISCH ◽  
K. KHANIN

Burgers turbulence subject to a force f(x, t) = [sum ]jfj(x)δ(t − tj), where tj are 'kicking times' and the 'impulses' fj(x) have arbitrary space dependence, combines features of the purely decaying and the continuously forced cases. With large-scale forcing this ‘kicked’ Burgers turbulence presents many of the regimes proposed by E et al. (1997) for the case of random white-noise-in-time forcing. It is also amenable to efficient numerical simulations in the inviscid limit, using a modification of the fast Legendre transform method developed for decaying Burgers turbulence by Noullez & Vergassola (1994). For the kicked case, concepts such as ‘minimizers’ and ‘main shock’, which play crucial roles in recent developments for forced Burgers turbulence, become elementary since everything can be constructed from simple two-dimensional area-preserving Euler–Lagrange maps.The main results are for the case of identical deterministic kicks which are periodic and analytic in space and are applied periodically in time. When the space integrals of the initial velocity and of the impulses vanish, it is proved and illustrated numerically that a space- and time-periodic solution is achieved exponentially fast. In this regime, probabilities can be defined by averaging over space and time periods. The probability densities of large negative velocity gradients and of (not-too-large) negative velocity increments follow the power law with −7/2 exponent proposed by E et al. (1997) in the inviscid limit, whose existence is still controversial in the case of white-in-time forcing. This power law, which is seen very clearly in the numerical simulations, is the signature of nascent shocks (preshocks) and holds only when at least one new shock is born between successive kicks.It is shown that the third-order structure function over a spatial separation Δx is analytic in Δx although the velocity field is generally only piecewise analytic (i.e. between shocks). Structure functions of order p ≠ 3 are non-analytic at Δx = 0. For even p there is a leading-order term proportional to [mid ]Δx[mid ] and for odd p > 3 the leading-order term ∝Δx has a non-analytic correction ∝Δx[mid ]Δx[mid ] stemming from shock mergers.


Sign in / Sign up

Export Citation Format

Share Document