Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition

Author(s):  
Zdenek P. Bazant ◽  
Jia-Liang Le
2017 ◽  
Vol 3 (1) ◽  
pp. 47 ◽  
Author(s):  
Sıddık Şener ◽  
Kadir Can Şener

The universal size effect law of concrete is a law that describes the dependence of nominal strength of specimens or structure on both its size and the crack (or notch) length, over the entire of interest, and exhibits the correct small and large size asymptotic properties as required. The main difficulty has been the transition of crack length from 0, in which case the size effect mode is Type 1, to deep cracks (or notches), in which case the size effect mode is Type 2 and fundamentally different from Type 1. The current study is based on recently obtained comprehensive fracture test data from three-point bending beams tested under identical conditions. In this test, the experimental program consisted of 80 three-point bend beams with 4 different depths 40, 93, 215 and 500mm, corresponding to a size range of 1:12.5. Five different relative notch lengths, a/D = 0, 0.02, 0.075, 0.15, 0.30 were cut into the beams. A total of 20 different geometries (family of beams) were tested. The present paper will use these data to analyze the effects of size, crack length. This paper presents a studying to improve the existing universal size effect law, named by Bazant, using the experimentally obtained beam strengths for various different specimen sizes and all notch depths. The updated universal size effect law is shown to fit the comprehensive data quite well.


2017 ◽  
Vol 24 (1) ◽  
pp. 88-99
Author(s):  
Marek Jakubowski

Abstract After Vosikovsky (1975), the corrosion fatigue crack growth rate (CFCGR) characteristics have been divided into three regions. The region-III rates are very close to mechanical fatigue crack growth rates. CFCGR formulae, including the long-crack length effect (in region I only), the loading frequency effect (in region II only), and the saltwater temperature effect, have been proposed. It has been assumed that CFCGR is proportional to f-k, where f is the loading frequency and k is a constant. The averaged k-value for all steels of yield stress (YS) below 500 MPa, usually with ferrite-pearlite microstructures, is higher than that for YS > 500 MPa, usually with quenched and tempered microstructures. The temperature effect does not appear in region I below room temperature. In the remaining cases, that is, in region I for elevated temperatures and in region II for both low and elevated temperatures, the CFCGR increases with increasing temperature. Under a potential of -0.8 V, a long-crack-length effect, qualitatively similar to analogous effect for free corrosion conditions, appears.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2783
Author(s):  
Wilmer Velilla-Díaz ◽  
Habib R. Zambrano

Molecular dynamics simulations of cracked nanocrystals of aluminum were performed in order to investigate the crack length and grain boundary effects. Atomistic models of single-crystals and bi-crystals were built considering 11 different crack lengths. Novel approaches based on fracture mechanics concepts were proposed to predict the crack length effect on single-crystals and bi-crystals. The results showed that the effect of the grain boundary on the fracture resistance was beneficial increasing the fracture toughness almost four times for bi-crystals.


Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo

Mitochondrial alterations were studied in 25 liver biopsies from patients with alcoholic liver disease. Of special interest were the morphologic resemblance of certain fine structural variations in mitochondria and crystalloid inclusions. Four types of alterations within mitochondria were found that seemed to relate to cytoplasmic crystalloids.Type 1 alteration consisted of localized groups of cristae, usually oriented in the long direction of the organelle (Fig. 1A). In this plane they appeared serrated at the periphery with blind endings in the matrix. Other sections revealed a system of equally-spaced diagonal lines lengthwise in the mitochondrion with cristae protruding from both ends (Fig. 1B). Profiles of this inclusion were not unlike tangential cuts of a crystalloid structure frequently seen in enlarged mitochondria described below.


Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


Author(s):  
J. C. Barry ◽  
H. Alexander

Dislocations in silicon produced by plastic deformation are generally dissociated into partials. 60° dislocations (Burgers vector type 1/2[101]) are dissociated into 30°(Burgers vector type 1/6[211]) and 90°(Burgers vector type 1/6[112]) dislocations. The 30° partials may be either of “glide” or “shuffle” type. Lattice images of the 30° dislocation have been obtained with a JEM 100B, and with a JEM 200Cx. In the aforementioned experiments a reasonable but imperfect match was obtained with calculated images for the “glide” model. In the present experiment direct structure images of 30° dislocation cores have been obtained with a JEOL 4000EX. It is possible to deduce the 30° dislocation core structure by direct inspection of the images. Dislocations were produced by compression of single crystal Si (sample preparation technique described in Alexander et al.).


Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
L. Stefaneanu ◽  
N. Losinski

Human pituitary corticotropins have unique morphologic markers: bundles of type-1 filaments, measuring approximately 70 A in width and representing cytokeratin. The extreme ring-like accumulation of type-1 filaments, known as Crooke's hyalinization, signals functional suppression of the corticotropins and occurs in endogenous and exogenous glucocorticoid excess, caused by ACTH-secreting pituitary adenoma, glucocorticoid secreting adrenocortical tumor, ectopic ACTH-syndrome and administration of pharmacologic doses of glucocorticoids. Cells of autonomous corticotroph adenomas usually do not show Crooke's hyalin change. A minority of these tumors, however, retains sensitivity to the negative feed-back effect of elevated blood glucocorticoid levels and display typical Crooke’s change.In the present study pituitary corticotropins in various phases of Crooke's hyalinization were investigated in patients with glucocorticoid excess of various origin, applying histology, immunocytochemistry, count of argyrophilic nucleolar organizer regions (AgNOR), and transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document