Novel guidance model and its application for optimal re-entry guidance

2018 ◽  
Vol 122 (1257) ◽  
pp. 1811-1825
Author(s):  
C.W. Jiang ◽  
G.F. Zhou ◽  
B. Yang ◽  
C.S. Gao ◽  
W.X. Jing

ABSTRACTAiming at three-dimensional (3D) terminal guidance problem, a novel guidance model is established in this paper, in which line-of-sight (LOS) range is treated as an independent variable, describing the relative motion between the vehicle and the target. The guidance model includes two differential equations that describe LOS’s pitch and yaw motions in which the pitch motion is separately decoupled. This model avoids the inaccuracy of simplified two-dimensional (2D) guidance model and the complexity of 3D coupled guidance model, which not only maintains the accuracy but also simplifies the guidance law design. The application of this guidance model is studied for optimal re-entry guidance law with impact angle constraint, which is presented in the form of normal overload. Compared with optimal guidance laws based on traditional guidance model, the proposed one based on novel guidance model is implemented with the LOS range instead of time-to-go, which avoids the problem of the time-to-go estimation of traditional optimal guidance laws. Finally, the correctness and validity of the guidance model and guidance law are verified by numerical simulation. The guidance model and guidance law proposed in this paper provide a new way for the design of terminal guidance.

Author(s):  
Hui Wang ◽  
Jiang Wang ◽  
Defu Lin

To study the optimal impact-angle-control guidance problem with multiple terminal constraints, a generalized optimal impact-angle-control guidance law with terminal acceleration response constraint (GOIACGL-TARC) is proposed. In the deriving, a time-to-go − nth power weighted object function is adopted to derived the GOIACGL-TARC and a general expression of GOIACGL-TARC is presented. Based on the general expression of GOIACGL-TARC, three guidance laws, GOIACGL-TARC1/TACC0/TACC1 are proposed and the inheritance relationship between GOIACGL-TACC0/TACC1/TARC1 and the conventional optimal guidance law with impact angle constraint is demonstrated. Performance analysis of the proposed guidance laws shows that in the case of GOIACGL-TACC0, the terminal acceleration is not zero at n = 0 and only as n > 0, the terminal acceleration converges to zero; in the case of GOIACGL-TACC1 and GOIACGL-TARC1, GOIACGL-TARC1 can guarantee the acceleration response to reach the exactly zero value but GOIACGL-TACC1 cannot, which can only guarantee the acceleration command to reach the exactly zero value. It is pointed out that compared with the biased proportional navigation guidance law, GOIACGL-TARC1 has an outstanding guidance performance in acceleration response, miss distance, and terminal impact angle error.


2021 ◽  
Vol 11 (22) ◽  
pp. 10857
Author(s):  
Mingyu Cong ◽  
Xianghong Cheng ◽  
Zhiquan Zhao ◽  
Zhijun Li

Cooperative terminal guidance with impact angle constraint is a key technology to achieve a saturation attack and improve combat effectiveness. The present study envisaged cooperative terminal guidance with impact angle constraint for multiple missiles. In this pursuit, initially, the three-dimensional cooperative terminal guidance law with multiple constraints was studied. The impact time cooperative strategy of virtual leader missile and follower missiles was designed by introducing virtual leader missiles. Subsequently, based on the distributed model prediction control combined with the particle swarm optimization algorithm, a cooperative terminal guidance algorithm was designed for multiple missiles with impact angle constraint that met the guidance accuracy. Finally, the effectiveness of the algorithm was verified using simulation experiments.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

2011 ◽  
Vol 317-319 ◽  
pp. 727-733
Author(s):  
Shuang Chun Peng ◽  
Liang Pan ◽  
Tian Jiang Hu ◽  
Lin Cheng Shen

A new three-dimensional (3D) nonlinear guidance law is proposed and developed for bank-to-turn (BTT) with motion coupling. First of all, the 3D guidance model is established. In detail, the line-of-sight (LOS) rate model is established with the vector description method, and the kinematics model is divided into three terms of pitching, swerving and coupling, then by using the twist-based method, the LOS direction changing model is built for designing the guidance law with terminal angular constraints. Secondly, the 3D guidance laws are designed with Lyapunov theory, corresponding to no terminal constraints and terminal constraints, respectively. And finally, the simulation results show that the proposed guidance law can effectively satisfy the guidance precision requirements of BTT missile.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Tianning Wang ◽  
Shengjing Tang ◽  
Jie Guo ◽  
Haoqiang Zhang

The implementation of advanced guidance laws with bearings-only measurements requires estimation of the range information. To improve estimation accuracy and satisfy the impact angle constraint, this paper proposes a two-phase optimal guidance law consisting of an observing phase and an attacking phase. In the observing phase, the determinant of Fisher information matrix is maximized to achieve the optimal observability and a suboptimal solution expressed by leading angle is derived analytically. Then, a terminal sliding-mode guidance law is designed to track the desired leading angle. In the followed attacking phase, an optimal guidance law is integrated with a switching term to satisfy both the impact angle constraint and the field-of-view constraint. Finally, comparison studies of the proposed guidance law and a traditional optimal guidance law are conducted on stationary targets and maneuvering targets cases. Simulation results demonstrate that the proposed guidance law is able to improve the range observability and achieve better terminal performances including impact angle accuracy and miss distance.


Author(s):  
Peng Li ◽  
Qi Liu ◽  
Chen-Yu He ◽  
Xiao-Qing Liu

This paper investigates the three-dimensional guidance with the impact angle constraint, actuator faults and input constraint. Firstly, an adaptive three-dimensional guidance law with impact angle constraint is designed by using the terminal sliding mode control and nonhomogeneous disturbance observer. Then, in order to solve the problem of the input saturation and actuator faults, an adaptive anti-saturation fault-tolerant three-dimensional law is proposed by using the hyperbolic tangent function based on the passive fault-tolerant control. Finally, the effectiveness of the designed guidance laws is verified by using the Lyapunov function and simulation.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 180467-180481 ◽  
Author(s):  
Ye Tian ◽  
Yuanli Cai ◽  
Zhenhua Yu ◽  
Yifan Deng

Sign in / Sign up

Export Citation Format

Share Document