scholarly journals Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations

2021 ◽  
pp. 1-13
Author(s):  
John C. Priscu ◽  
Jonas Kalin ◽  
John Winans ◽  
Timothy Campbell ◽  
Matthew R. Siegfried ◽  
...  

Abstract The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.

Author(s):  
Martin J. Siegert ◽  
John C. Priscu ◽  
Irina A. Alekhina ◽  
Jemma L. Wadham ◽  
W. Berry Lyons

After more than a decade of planning, three attempts were made in 2012–2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future.


2014 ◽  
Vol 55 (65) ◽  
pp. 51-58 ◽  
Author(s):  
Slawek Tulaczyk ◽  
Jill A. Mikucki ◽  
Matthew R. Siegfried ◽  
John C. Priscu ◽  
C. Grace Barcheck ◽  
...  

AbstractA clean hot-water drill was used to gain access to Subglacial Lake Whillans (SLW) in late January 2013 as part of the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Over 3 days, we deployed an array of scientific tools through the SLW borehole: a downhole camera, a conductivity–temperature–depth (CTD) probe, a Niskin water sampler, an in situ filtration unit, three different sediment corers, a geothermal probe and a geophysical sensor string. Our observations confirm the existence of a subglacial water reservoir whose presence was previously inferred from satellite altimetry and surface geophysics. Subglacial water is about two orders of magnitude less saline than sea water (0.37–0.41 psu vs 35 psu) and two orders of magnitude more saline than pure drill meltwater (<0.002 psu). It reaches a minimum temperature of –0.55~C, consistent with depression of the freezing point by 7.019 MPa of water pressure. Subglacial water was turbid and remained turbid following filtration through 0.45 µm filters. The recovered sediment cores, which sampled down to 0.8 m below the lake bottom, contained a macroscopically structureless diamicton with shear strength between 2 and 6 kPa. Our main operational recommendation for future subglacial access through water-filled boreholes is to supply enough heat to the top of the borehole to keep it from freezing.


2012 ◽  
Vol 3 (6) ◽  
pp. 95-100
Author(s):  
Anastasija Moisejenkova ◽  
Aloyzas Girgždys ◽  
Nikolaj Tarasiuk

The article presents the results of the integrated study of radiocesium behavior in Lake Tapeliai using not only conventional data on radiocesium activity concentrations in lake water and sediments but also a complex data set on seasonal variations and vertical profiles of standard water variables. Radiocesium activity concentrations in lake water as well as the vertical structure of the water column considerably depend on the inflows of the colored waters from the swampy watershed of the lake enriched in radiocesium. The global fallouts are mainly responsible for radiocesium inventory in lake sediments, which reaches maximum in the upper part of the water column above the ~5.4-m depth. The maximum values of radiocesium inventories in lake sediments are consistent with the respective densities of its deposits in the nearest forest soils. The main process of sediment activation is the direct sorption of radiocesium onto the sediment surface. Sedimentation rates in the lake vary mainly in the range of 3.5–5 mm·a–1. Lake bottom feeding sources located mainly on the southern terrace as well as their related near-bottom flows reduce respective sedimentation and radiocesium inventories in the sediments. Santrauka Straipsnyje nagrinėjama radiocezio elgsena Tapelių ežere, naudojant ne tik radiocezio savitojo ir tūrinio aktyvumų duomenis, bet ir standartinius vertikaliuosius parametrus, tokius kaip temperatūra, elektros laidumai ir oksiduoto sluoksnio storis. Radiocezio aktyvumas ežero vandenyje priklauso nuo spalvoto pelkinio vandens, kuriame yra radiocezio, patekimo į ežerą. Radiocezio apkrova dugno nuosėdose yra didžiausia viršutinėje ežero dalyje, t. y. iki 5,4 m gylio. Sedimentacijos greitis svyruoja 3,5–5 mm·m–1. Ežero priedugniniai vandens šaltiniai daugiausia išsidėstę pietinėje ežero terasoje, jų srovės sumažina sedimentaciją ir radiocezio apkrovą dugno nuosėdose.


1984 ◽  
Vol 19 (2) ◽  
pp. 97-109 ◽  
Author(s):  
R.J. Cornett ◽  
L. Chant ◽  
D. Link

Abstract The average annual flux of Pb-210 from the atmosphere to lake surfaces and to the bottom sediments was measured in seven small lakes located on the Laurentian Shield. Direct atmospheric fallout of Pb-210 was 136 ± 16 Bq m-2 a-1 Streams from the lakes' catchments input an additional 5 to 473 Bq m-2 a-1. Only 16 to 80 percent of the total input was found in the lake sediments. The fractional rate constant for Pb-210 sedimentation from the water column ranged from 0.25 to 5.3 per annum.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 563
Author(s):  
Wiebe Förster ◽  
Jan C. Scholten ◽  
Michael Schubert ◽  
Kay Knoeller ◽  
Nikolaus Classen ◽  
...  

The eutrophic Lake Eichbaumsee, a ~1 km long and 280 m wide (maximum water depth 16 m) dredging lake southeast of Hamburg (Germany), has been treated for water quality improvements using various techniques (i.e., aeration plants, removal of dissolved phosphorous by aluminum phosphorous precipitation, and by Bentophos® (Phoslock Environmental Technologies, Sydney, Australia), adsorption) during the past ~15 years. Despite these treatments, no long-term improvement of the water quality has been observed and the lake water phosphorous content has continued to increase by e.g., ~670 kg phosphorous between autumn 2014 and autumn 2019. As no creeks or rivers drain into the lake and hydrological groundwater models do not suggest any major groundwater discharge into the lake, sources of phosphorous (and other nutrients) are unknown. We investigated the phosphorous fluxes from sediment pore water and from groundwater in the water body of the lake. Sediment pore water was extracted from sediment cores recovered by divers in August 2018 and February 2019. Diffusive phosphorous fluxes from pore water were calculated based on phosphorus gradients. Stable water isotopes (δ2H, δ18O) were measured in the lake water, in interstitial waters in the banks surrounding the lake, in the Elbe River, and in three groundwater wells close to the lake. Stable isotope (δ2H, δ18O) water mass balance models were used to compute water inflow/outflow to/from the lake. Our results revealed pore-water borne phosphorous fluxes between 0.2 mg/m2/d and 1.9 mg/m2/d. Assuming that the measured phosphorous fluxes are temporarily and spatially representative for the whole lake, about 11 kg/a to 110 kg/a of phosphorous is released from sediments. This amount is lower than the observed lake water phosphorous increase of ~344 kg between April 2018 and November 2018. Water stable isotope (δ2H, δ18O) compositions indicate a water exchange between an aquifer and the lake water. Based on stable isotope mass balances we estimated an inflow of phosphorous from the aquifer to the lake of between ~150 kg/a and ~390 kg/a. This result suggests that groundwater-borne phosphorous is a significant phosphorous source for the Eichbaumsee and highlights the importance of groundwater for lake water phosphorous balances.


2021 ◽  
Author(s):  
Marttiina V. Rantala ◽  
Carsten Meyer-Jacob ◽  
E. Henriikka Kivilä ◽  
Tomi P. Luoto ◽  
Antti. E. K. Ojala ◽  
...  

AbstractGlobal environmental change alters the production, terrestrial export, and photodegradation of organic carbon in northern lakes. Sedimentary biogeochemical records can provide a unique means to understand the nature of these changes over long time scales, where observational data fall short. We deployed in situ experiments on two shallow subarctic lakes with contrasting light regimes; a clear tundra lake and a dark woodland lake, to first investigate the photochemical transformation of carbon and nitrogen elemental (C/N ratio) and isotope (δ13C, δ15N) composition in lake water particulate organic matter (POM) for downcore inferences. We then explored elemental, isotopic, and spectral (inferred lake water total organic carbon [TOC] and sediment chlorophyll a [CHLa]) fingerprints in the lake sediments to trace changes in aquatic production, terrestrial inputs and photodegradation before and after profound human impacts on the global carbon cycle prompted by industrialization. POM pool in both lakes displayed tentative evidence of UV photoreactivity, reflected as increasing δ13C and decreasing C/N values. Through time, the tundra lake sediments traced subtle shifts in primary production, while the woodland lake carried signals of changing terrestrial contributions, indicating shifts in terrestrial carbon export but possibly also photodegradation rates. Under global human impact, both lakes irrespective of their distinct carbon regimes displayed evidence of increased productivity but no conspicuous signs of increased terrestrial influence. Overall, sediment biogeochemistry can integrate a wealth of information on carbon regulation in northern lakes, while our results also point to the importance of considering the entire spectrum of photobiogeochemical fingerprints in sedimentary studies.


Polar Biology ◽  
2021 ◽  
Author(s):  
Carmen L. David ◽  
Fokje L. Schaafsma ◽  
Jan A. van Franeker ◽  
Evgeny A. Pakhomov ◽  
Brian P. V. Hunt ◽  
...  

AbstractSurvival of larval Antarctic krill (Euphausia superba) during winter is largely dependent upon the presence of sea ice as it provides an important source of food and shelter. We hypothesized that sea ice provides additional benefits because it hosts fewer competitors and provides reduced predation risk for krill larvae than the water column. To test our hypothesis, zooplankton were sampled in the Weddell-Scotia Confluence Zone at the ice-water interface (0–2 m) and in the water column (0–500 m) during August–October 2013. Grazing by mesozooplankton, expressed as a percentage of the phytoplankton standing stock, was higher in the water column (1.97 ± 1.84%) than at the ice-water interface (0.08 ± 0.09%), due to a high abundance of pelagic copepods. Predation risk by carnivorous macrozooplankton, expressed as a percentage of the mesozooplankton standing stock, was significantly lower at the ice-water interface (0.83 ± 0.57%; main predators amphipods, siphonophores and ctenophores) than in the water column (4.72 ± 5.85%; main predators chaetognaths and medusae). These results emphasize the important role of sea ice as a suitable winter habitat for larval krill with fewer competitors and lower predation risk. These benefits should be taken into account when considering the response of Antarctic krill to projected declines in sea ice. Whether reduced sea-ice algal production may be compensated for by increased water column production remains unclear, but the shelter provided by sea ice would be significantly reduced or disappear, thus increasing the predation risk on krill larvae.


2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

&lt;p&gt;The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.&lt;/p&gt;&lt;p&gt;In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.&lt;/p&gt;&lt;p&gt;In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.&lt;/p&gt;&lt;p&gt;The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.&lt;/p&gt;&lt;p&gt;Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.&lt;/p&gt;


2000 ◽  
Vol 46 (153) ◽  
pp. 341-345 ◽  
Author(s):  
H. Engelhardt ◽  
B. Kamb ◽  
R. Bolsey

AbstractA new method of ice-core drilling uses an annulus of hot-water jets to melt out a cylindrical ice core. This lightweight device used in combination with a fast hot-water drill can quickly obtain ice cores from any depth.


Sign in / Sign up

Export Citation Format

Share Document