On the range of the transient frog model on ℤ

2017 ◽  
Vol 49 (2) ◽  
pp. 327-343 ◽  
Author(s):  
Arka Ghosh ◽  
Steven Noren ◽  
Alexander Roitershtein

Abstract We observe the frog model, an infinite system of interacting random walks, on ℤ with an asymmetric underlying random walk. For certain initial frog distributions we construct an explicit formula for the moments of the leftmost visited site, as well as their asymptotic scaling limits as the drift of the underlying random walk vanishes. We also provide conditions in which the lower bound can be scaled to converge in probability to the degenerate distribution at 1 as the drift vanishes.

2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Serguei Yu. Popov

International audience We review some recent results for a system of simple random walks on graphs, known as \emphfrog model. Also, we discuss several modifications of this model, and present a few open problems. A simple version of the frog model can be described as follows: There are active and sleeping particles living on some graph. Each active particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1-p. When an active particle hits a sleeping particle, the latter becomes active.


2018 ◽  
Vol 55 (4) ◽  
pp. 1093-1112
Author(s):  
Josh Rosenberg

Abstract We examine a system of interacting random walks with leftward drift on ℤ, which begins with a single active particle at the origin and some distribution of inactive particles on the positive integers. Inactive particles become activated when landed on by other particles, and all particles beginning at the same point possess equal leftward drift. Once activated, the trajectories of distinct particles are independent. This system belongs to a broader class of problems involving interacting random walks on rooted graphs, referred to collectively as the frog model. Additional conditions that we impose on our model include that the number of frogs (i.e. particles) at positive integer points is a sequence of independent random variables which is increasing in terms of the standard stochastic order, and that the sequence of leftward drifts associated with frogs originating at these points is decreasing. Our results include sharp conditions with respect to the sequence of random variables and the sequence of drifts that determine whether the model is transient (meaning the probability infinitely many frogs return to the origin is 0) or nontransient. We consider several, more specific, versions of the model described, and a cleaner, more simplified set of sharp conditions will be established for each case.


Author(s):  
Charles Bordenave ◽  
Hubert Lacoin

Abstract It is a fact simple to establish that the mixing time of the simple random walk on a d-regular graph $G_n$ with n vertices is asymptotically bounded from below by $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$ . Such a bound is obtained by comparing the walk on $G_n$ to the walk on d-regular tree $\mathcal{T} _d$ . If one can map another transitive graph $\mathcal{G} $ onto $G_n$ , then we can improve the strategy by using a comparison with the random walk on $\mathcal{G} $ (instead of that of $\mathcal{T} _d$ ), and we obtain a lower bound of the form $\frac {1}{\mathfrak{h} }\log n$ , where $\mathfrak{h} $ is the entropy rate associated with $\mathcal{G} $ . We call this the entropic lower bound. It was recently proved that in the case $\mathcal{G} =\mathcal{T} _d$ , this entropic lower bound (in that case $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$ ) is sharp when graphs have minimal spectral radius and thus that in that case the random walk exhibits cutoff at the entropic time. In this article, we provide a generalisation of the result by providing a sufficient condition on the spectra of the random walks on $G_n$ under which the random walk exhibits cutoff at the entropic time. It applies notably to anisotropic random walks on random d-regular graphs and to random walks on random n-lifts of a base graph (including nonreversible walks).


2015 ◽  
Vol 24 (6) ◽  
pp. 838-856 ◽  
Author(s):  
S. GOUEZEL

Estimating numerically the spectral radius of a random walk on a non-amenable graph is complicated, since the cardinality of balls grows exponentially fast with the radius. We propose an algorithm to get a bound from below for this spectral radius in Cayley graphs with finitely many cone types (including for instance hyperbolic groups). In the genus 2 surface group, it improves by an order of magnitude the previous best bound, due to Bartholdi.


2010 ◽  
Vol 42 (02) ◽  
pp. 528-558 ◽  
Author(s):  
D. A. Croydon

Consider a family of random ordered graph trees (Tn)n≥1, whereTnhasnvertices. It has previously been established that if the associated search-depth processes converge to the normalised Brownian excursion when rescaled appropriately asn→ ∞, then the simple random walks on the graph trees have the Brownian motion on the Brownian continuum random tree as their scaling limit. Here, this result is extended to demonstrate the existence of a diffusion scaling limit whenever the volume measure on the limiting real tree is nonatomic, supported on the leaves of the limiting tree, and satisfies a polynomial lower bound for the volume of balls. Furthermore, as an application of this generalisation, it is established that the simple random walks on a family of Galton-Watson trees with a critical infinite variance offspring distribution, conditioned on the total number of offspring, can be rescaled to converge to the Brownian motion on a related α-stable tree.


2010 ◽  
Vol 42 (2) ◽  
pp. 528-558 ◽  
Author(s):  
D. A. Croydon

Consider a family of random ordered graph trees (Tn)n≥1, where Tn has n vertices. It has previously been established that if the associated search-depth processes converge to the normalised Brownian excursion when rescaled appropriately as n → ∞, then the simple random walks on the graph trees have the Brownian motion on the Brownian continuum random tree as their scaling limit. Here, this result is extended to demonstrate the existence of a diffusion scaling limit whenever the volume measure on the limiting real tree is nonatomic, supported on the leaves of the limiting tree, and satisfies a polynomial lower bound for the volume of balls. Furthermore, as an application of this generalisation, it is established that the simple random walks on a family of Galton-Watson trees with a critical infinite variance offspring distribution, conditioned on the total number of offspring, can be rescaled to converge to the Brownian motion on a related α-stable tree.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1148
Author(s):  
Jewgeni H. Dshalalow ◽  
Ryan T. White

In a classical random walk model, a walker moves through a deterministic d-dimensional integer lattice in one step at a time, without drifting in any direction. In a more advanced setting, a walker randomly moves over a randomly configured (non equidistant) lattice jumping a random number of steps. In some further variants, there is a limited access walker’s moves. That is, the walker’s movements are not available in real time. Instead, the observations are limited to some random epochs resulting in a delayed information about the real-time position of the walker, its escape time, and location outside a bounded subset of the real space. In this case we target the virtual first passage (or escape) time. Thus, unlike standard random walk problems, rather than crossing the boundary, we deal with the walker’s escape location arbitrarily distant from the boundary. In this paper, we give a short historical background on random walk, discuss various directions in the development of random walk theory, and survey most of our results obtained in the last 25–30 years, including the very recent ones dated 2020–21. Among different applications of such random walks, we discuss stock markets, stochastic networks, games, and queueing.


2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2014 ◽  
Vol 46 (2) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


Sign in / Sign up

Export Citation Format

Share Document