Symmetry Functions in AC° can be Computed in Constant Depth with Very Small Size

1992 ◽  
pp. 129-139 ◽  
Author(s):  
Ingo Wegener ◽  
Norbert Wurm ◽  
Sang-Zin Yi
Keyword(s):  
2018 ◽  
Vol 19 (4) ◽  
pp. 1-34 ◽  
Author(s):  
Michal Garlík ◽  
Leszek Aleksander Kołodziejczyk
Keyword(s):  

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84837 ◽  
Author(s):  
Claudia Lüdecke ◽  
Klaus D. Jandt ◽  
Daniel Siegismund ◽  
Marian J. Kujau ◽  
Emerson Zang ◽  
...  

Author(s):  
Matthew Coudron ◽  
Jalex Stark ◽  
Thomas Vidick

AbstractThe generation of certifiable randomness is the most fundamental information-theoretic task that meaningfully separates quantum devices from their classical counterparts. We propose a protocol for exponential certified randomness expansion using a single quantum device. The protocol calls for the device to implement a simple quantum circuit of constant depth on a 2D lattice of qubits. The output of the circuit can be verified classically in linear time, and is guaranteed to contain a polynomial number of certified random bits assuming that the device used to generate the output operated using a (classical or quantum) circuit of sub-logarithmic depth. This assumption contrasts with the locality assumption used for randomness certification based on Bell inequality violation and more recent proposals for randomness certification based on computational assumptions. Furthermore, to demonstrate randomness generation it is sufficient for a device to sample from the ideal output distribution within constant statistical distance. Our procedure is inspired by recent work of Bravyi et al. (Science 362(6412):308–311, 2018), who introduced a relational problem that can be solved by a constant-depth quantum circuit, but provably cannot be solved by any classical circuit of sub-logarithmic depth. We develop the discovery of Bravyi et al. into a framework for robust randomness expansion. Our results lead to a new proposal for a demonstrated quantum advantage that has some advantages compared to existing proposals. First, our proposal does not rest on any complexity-theoretic conjectures, but relies on the physical assumption that the adversarial device being tested implements a circuit of sub-logarithmic depth. Second, success on our task can be easily verified in classical linear time. Finally, our task is more noise-tolerant than most other existing proposals that can only tolerate multiplicative error, or require additional conjectures from complexity theory; in contrast, we are able to allow a small constant additive error in total variation distance between the sampled and ideal distributions.


Author(s):  
Utku Kânoğlu ◽  
Vasily V. Titov ◽  
Baran Aydın ◽  
Christopher Moore ◽  
Themistoklis S. Stefanakis ◽  
...  

Tsunamis are long waves that evolve substantially, through spatial and temporal spreading from their source region. Here, we introduce a new analytical solution to study the propagation of a finite strip source over constant depth using linear shallow-water wave theory. This solution is not only exact, but also general and allows the use of realistic initial waveforms such as N -waves. We show the existence of focusing points for N -wave-type initial displacements, i.e. points where unexpectedly large wave heights may be observed. We explain the effect of focusing from a strip source analytically, and explore it numerically. We observe focusing points using linear non-dispersive and linear dispersive theories, analytically; and nonlinear non-dispersive and weakly nonlinear weakly dispersive theories, numerically. We discuss geophysical implications of our solutions using the 17 July 1998 Papua New Guinea and the 17 July 2006 Java tsunamis as examples. Our results may also help to explain high run-up values observed during the 11 March 2011 Japan tsunami, which are otherwise not consistent with existing scaling relationships. We conclude that N -waves generated by tectonic displacements feature focusing points, which may significantly amplify run-up beyond what is often assumed from widely used scaling relationships.


2021 ◽  
Author(s):  
Mario Guisasola

<p>The Von Mises, Monocontentio and Bicontentio footbridges are three parameterized metal bridge whose main structural characteristics are their variable depth depending on the applied stress and the embedding of abutments. Its use is considered suitable for symmetrical or asymmetrical topographies with slopes or vertical walls on one or both edges. The footbridges include spans spaced apart by 20 to 66 meters, and are between 2 to 4.5 meters wide.</p><p>Its design is based on five basic concepts: integration in the geometry of the environment; continuous search for simplicity; design based on a geometry that emanates from structural behavior; unitary and round forms; and long- lasting details.</p><p>The structural behavior of these prototypes has been compared with three types of constant-depth metal beams: the bridge simply supported, and the bridge embedded on one or both sides.</p><p>The embedding of abutments, and the adoption of a variation of depth adapted to the bending moments diagrams, allow for more efficient and elegant forms which are well-adapted to the boundary conditions.</p>


1977 ◽  
Vol 71 (1) ◽  
pp. 205-211
Author(s):  
ELFED MORGAN

1. The mechanical power required by Nymphon for swimming at constant depth has been calculated from drag forces acting on the legs. For an adult male this was found to be 3.4 W kg. Only about 60% of this is used to support the animal's weight in water. 2. The metabolic rate fluctuates spontaneously over a tidal cycle, being greatest during the ebb-tide period. The mean rate of oxygen consumption during the animals least active phase was found to be about 0.1 μlO2 mg−1 h−1. 3. The total carbohydrate and lipid immediately available for combustion have been estimated at 4.64 and 16 μg/mg wet wt respectively. These quantities should be adequate for about 42 h periodic swimming in an adult Nymphon.


Sign in / Sign up

Export Citation Format

Share Document