The energy-momentum tensor and Lagrangian density

Author(s):  
E. Comay

This work discusses the significance of the energy-momentum tensor of physical fields of an elementary particle. The Noether theorem shows how this tensor can be derived from the Lagrangian density of a given field. This work proves that the energy-momentum tensor can also be used for a consistency test of a field theory. The results show that the Dirac Lagrangian density of a spin-1/2 massive particle yields consistent results. On the other hand, problems exist with the present structure of quantum electrodynamics, and with quantum fields of massive particles that are described by a second order differential equation. All problematic results are confirmed by an independent analysis.


Author(s):  
E. Comay

The successful results of the relativistic form of a quantum field theory that is derived from aLagrangian density justify its general usage. The significance of the Euler-Lagrange equations of a quantum particle is analysed. Many advantages of this approach, like abiding by the conservation laws of energy, momentum, angular momentum, and charge are well known. The merits of this approach also include other properties that are still not well known. For example, it is shown that a quantum function of the form ψ(t, r) describes a pointlike particle. Furthermore, the Lagrangian density and the Hamiltonian density take a different relativistic form – the Lagrangian density is a Lorentz scalar, whereas the Hamiltonian density is the T00 component of the energy-momentum tensor. It is proved that inconsistencies in the electroweak theory stem from negligence of the latter point.


Author(s):  
Eliahu Comay

Relativistic properties of a Dirac Lagrangian density are compared with those of a Dirac Hamiltonian density. Differences stem from the fact that a Lagrangian density is a Lorentz scalar, whereas a Hamiltonian density is a 00-component of a second rank tensor, called the energy-momentum tensor. This distinction affects the form of an interaction term of a Dirac particle. In particular, a tensor interaction term of a Dirac Lagrangian density transforms to a difference between a vector and an axial vector of the corresponding Hamiltonian density. This outcome shows that fundamental principles can prove the V-A attribute of weak interactions. A further analysis supports these results. Inherent problems of the electroweak theory are discussed.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2021 ◽  
Vol 11 (2) ◽  
pp. 681
Author(s):  
Pengfei Yu ◽  
Weifeng Leng ◽  
Yaohong Suo

The flexoelectricity, which is a new electromechanical coupling phenomenon between strain gradients and electric polarization, has a great influence on the fracture analysis of flexoelectric solids due to the large gradients near the cracks. On the other hand, although the flexoelectricity has been extensively investigated in recent decades, the study on flexoelectricity in nonhomogeneous materials is still rare, especially the fracture problems. Therefore, in this manuscript, the conservation integrals for nonhomogeneous flexoelectric materials are obtained to solve the fracture problem. Application of operators such as grad, div, and curl to electric Gibbs free energy and internal energy, the energy-momentum tensor, angular momentum tensor, and dilatation flux can also be derived. We examine the correctness of the conservation integrals by comparing with the previous work and discuss the operator method here and Noether theorem in the previous work. Finally, considering the flexoelectric effect, a nonhomogeneous beam problem with crack is solved to show the application of the conservation integrals.


The flux integral for axisymmetric polar perturbations of static vacuum space-times, derived in an earlier paper directly from the relevant linearized Einstein equations, is rederived with the aid of the Einstein pseudo-tensor by a simple algorism. A similar earlier effort with the aid of the Landau–Lifshitz pseudo-tensor failed. The success with the Einstein pseudo-tensor is due to its special distinguishing feature that its second variation retains its divergence-free property provided only the equations governing the static space-time and its linear perturbations are satisfied. When one seeks the corresponding flux integral for Einstein‒Maxwell space-times, the common procedure of including, together with the pseudo-tensor, the energy‒momentum tensor of the prevailing electromagnetic field fails. But, a prescription due to R. Sorkin, of including instead a suitably defined ‘Noether operator’, succeeds.


Sign in / Sign up

Export Citation Format

Share Document