Miniaturized polymerase chain reaction for quantitative clinical diagnostics

2011 ◽  
pp. 88-109
Author(s):  
Melissa Mariani ◽  
Lin Chen ◽  
Philip J. Day
Author(s):  
E. S. Klochikhina ◽  
V. E. Shershov ◽  
V. E. Kuznetsova ◽  
S. A. Lapa ◽  
A. V. Chudinov

Objectives. The objectives of this work are the development of a multi-primer system based on the polymerase chain reaction (PCR) aimed at the simultaneous detection of six bacterial pathogens that cause human pneumonia and the determination of the parameters important for the optimization of this multi-primer system, including solid-phase PCR systems (biological microarrays).Methods. To determine the optimal parameters of the system, PCR methods were used in monoplex and multiplex formats.Results. Primers for Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenza, Legionella pneumophila, Klebsiella pneumoniae, and Streptococcus pneumoniae detection were designed, and the PCR cycling conditions were optimized. The patterns of primer design for solidphase PCR were revealed.Conclusions. The developed prototype of a system specifically identifies six clinically significant bacterial pathogens. It could be expanded for the analysis of viral and fungal pathogens and used in clinical diagnostics. A prototype of a system for pathogenic agent detection in the immobilized phase (biological microarray) was created.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1609 ◽  
Author(s):  
Di Wu ◽  
Wenming Wu

Temperature control is the most important and fundamental part of a polymerase chain reaction (PCR). To date, there have been several methods to realize the periodic heating and cooling of the thermal-cycler system for continuous-flow PCR reactions, and three of them were widely used: the thermo-cycled thermoelectric cooler (TEC), the heating block, and the thermostatic heater. In the present study, a new approach called open-loop controlled single thermostatic TEC was introduced to control the thermal cycle during the amplification process. Differing from the former three methods, the size of this microdevice is much smaller, especially when compared to the microdevice used in the heating block method. Furthermore, the rising and cooling speed of this method is much rapider than that in a traditional TEC cycler, and is nearly 20–30% faster than a single thermostatic heater. Thus, a portable PCR system was made without any external heat source, and only a Teflon tube-wrapped TEC chip was used to achieve the continuous-flow PCR reactions. This provides an efficient way to reduce the size of the system and simplify it. In addition, through further experiments, the microdevice is not only found to be capable of amplification of a PCR product from Human papillomavirus type 49 (Genbank ref: X74480.1) and Rubella virus (RUBV), but also enables clinical diagnostics, such as a test for hepatitis B virus.


2019 ◽  
Author(s):  
Yongfan Men ◽  
Jiannan Li ◽  
Tingting Ao ◽  
Zhihao Li ◽  
Bizhu Wu ◽  
...  

AbstractDigital polymerase chain reaction (PCR) is a fast-developed technology, which makes it possible to provide absolute quantitative results. However, this technology has not been widely used in research field or clinical diagnostics. Although digital PCR has been born for two decades, the products on this subject still suffer from either high cost or cumbersome user experience, hence very few labs have the willingness or budget to routinely use such product; On the other hand, the unique sensitivity of dPCR over traditional qPCR shows great potential applications. Here, a cost-effective digital PCR method based on a microfluidic printing system was introduced, trying to overcome those shortcomings. The microfluidic droplet printing technology was utilized in this study to directly generate droplet array containing PCR reaction solution onto the simple glass substrate for the subsequent PCR and imaging, which could be done with any regular flat-panel PCR machine and microscope. The method introduces a new perspective in droplet-based digital PCR in that the droplets generated with this method aligns well in an array without touch with each other, therefore the regular glass and oil could be used without any special surfactant. With simple analysis, the data generated with this method showed reliable quality, which followed the Poisson distribution trend. Compared with other expensive digital PCR methods, this system is more affordable and simpler to integrate, especially for those biological or medical labs which are in need for the digital PCR options but short in budget. Therefore, this method is believed to have the great potential in the future market application.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


Sign in / Sign up

Export Citation Format

Share Document