scholarly journals 2350 Creating a comprehensive municipal inventory of common ragweed (Ambrosia artemisiifolia) to predict allergenic pollen exposures

2018 ◽  
Vol 2 (S1) ◽  
pp. 7-7
Author(s):  
Daniel S. W. Katz ◽  
Stuart Batterman

OBJECTIVES/SPECIFIC AIMS: One of the key difficulties in predicting allergenic pollen exposures has been a lack of information on source plant location and abundance. However, the increasing availability of spatially explicit data from remote sensing offers new opportunities to create comprehensive inventories of allergenic pollen producing plants. METHODS/STUDY POPULATION: In this study, we use a spatially oriented field survey to map common ragweed (Ambrosia artemisiifolia) in Detroit, MI, USA. We then combine this with remote sensing imagery and LiDAR to predict ragweed presence and potential pollen production across 344 km2 of Detroit. Finally, we compare this with measurements of airborne pollen concentrations collected throughout the city. RESULTS/ANTICIPATED RESULTS: Our initial results show that ragweed is present in ~2% of the city, and its presence and abundance are strongly associated with demolished building (p<0.001). The uneven distribution of ragweed plants across the city leads to substantially higher pollen concentrations in neighborhoods where more buildings have been recently demolished. DISCUSSION/SIGNIFICANCE OF IMPACT: Our approach offers an effective way to quantify allergenic pollen production, airborne concentrations, and exposures across a large metropolitan area. This in turn provides insight on how to best reduce airborne pollen concentrations: in this case, by changing post-demolition land management practices.

2016 ◽  
Vol 13 (9) ◽  
pp. 2769-2786 ◽  
Author(s):  
Li Liu ◽  
Fabien Solmon ◽  
Robert Vautard ◽  
Lynda Hamaoui-Laguel ◽  
Csaba Zsolt Torma ◽  
...  

Abstract. Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000–2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen spread are evaluated through calculation of exposure time above health-relevant threshold levels. The total risk area with concentration above 5 grains m−3 takes up 29.5 % of domain. The longest exposure time occurs on Pannonian Plain, where the number of days per year with the daily concentration above 20 grains m−3 exceeds 30.


2015 ◽  
Vol 12 (21) ◽  
pp. 17595-17641 ◽  
Author(s):  
L. Liu ◽  
F. Solmon ◽  
R. Vautard ◽  
L. Hamaoui-Laguel ◽  
Cs. Zs. Torma ◽  
...  

Abstract. Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000–2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health-relevant threshold levels. The total risk area with concentration above 5 grains m−3 takes up 29.5 % of domain. The longest exposure time occurs on Pannonian Plain, where the number of days per year with the daily concentration above 20 grains m−3 exceeds 30.


2016 ◽  
Vol 69 (4) ◽  
Author(s):  
Barbara Majkowska-Wojciechowska ◽  
Zofia Balwierz ◽  
Marek L. Kowalski

Recent studies suggest that climate change can influence plant reproductive systems and have an impact on the increase in allergenic pollen in atmospheric air; highly allergenic pollen may intensify the allergic response in people. The aim of our study was to evaluate the seasonal dynamic concentration of the most allergenic pollen taxa, i.e., the following trees: <em>Alnus</em>, <em>Corylus</em>, <em>Betula</em>, and herbaceous plants: grasses (Poaceae), <em>Artemisia</em>, and <em>Ambrosia</em>, in the long-term period of 2003–2013 in the city of Lodz, Poland. Weekly airborne pollen concentrations were evaluated with a volumetric Lansoni pollen trap. The beginning and the end of the season were calculated by the 98% method. The birch (<em>Betula</em>) pollen was at the highest level and accounted for 79%, followed by alder (<em>Alnus</em>) – 19%, and hazel (<em>Corylus</em>) – 2%. Among the herbaceous taxa, grasses (Poaceae) pollen dominated – 79%, followed by mugwort (<em>Artemisia</em>) – 18%, and ragweed (<em>Ambrosia</em>) – 3%. Our findings indicate a lack of qualitative and quantitative change in the pollen produced over the 11-year period.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Polling ◽  
Chen Li ◽  
Lu Cao ◽  
Fons Verbeek ◽  
Letty A. de Weger ◽  
...  

AbstractMonitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera (Urtica and Parietaria) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with > 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.


Aerobiologia ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 669-682 ◽  
Author(s):  
Antonella Cristofori ◽  
Edith Bucher ◽  
Michele Rossi ◽  
Fabiana Cristofolini ◽  
Veronika Kofler ◽  
...  

AbstractArtemisia pollen is an important aeroallergen in late summer, especially in central and eastern Europe where distinct anemophilous Artemisia spp. produce high amounts of pollen grains. The study aims at: (i) analyzing the temporal pattern of and changes in the Artemisia spp. pollen season; (ii) identifying the Artemisia species responsible for the local airborne pollen load.Daily pollen concentration of Artemisia spp. was analyzed at two sites (BZ and SM) in Trentino-Alto Adige, North Italy, from 1995 to 2019.The analysis of airborne Artemisia pollen concentrations evidences the presence of a bimodal curve, with two peaks, in August and September, respectively. The magnitude of peak concentrations varies across the studied time span for both sites: the maximum concentration at the September peak increases significantly for both the BZ (p < 0.05) and SM (p < 0.001) site. The first peak in the pollen calendar is attributable to native Artemisia species, with A. vulgaris as the most abundant; the second peak is mostly represented by the invasive species A. annua and A. verlotiorum (in constant proportion along the years), which are causing a considerable increase in pollen concentration in the late pollen season in recent years.. The spread of these species can affect human health, increasing the length and severity of allergenic pollen exposure in autumn, as well as plant biodiversity in both natural and cultivated areas, with negative impacts on, e.g., Natura 2000 protected sites and crops.


Author(s):  
Rachel N. McInnes

Allergenic pollen is produced by the flowers of a number of trees, grasses, and weeds found throughout the world. Human exposure to such pollen grains can exacerbate pollen-related asthma and allergenic conditions such as allergic rhinitis (hay fever). While allergenic pollen comes from three main groups of plants—certain trees, grasses, and weeds—many people are sensitive to pollen from one or a few taxa only. Weather, climate, and environmental conditions have a significant impact on the levels and varieties of pollen grains present in the air. These allergenic conditions significantly reduce the quality of life of affected individuals and have been shown to have a major economic impact. Pollen production depends on both the current meteorological conditions (including day length, temperature, irradiation, precipitation, and wind speed/direction), and the water availability and other environmental and meteorological conditions experienced in the previous year. The climate affects the types of vegetation and taxa that can grow in a particular location through availability of different habitats. Land-use or land management is also crucial, and so this field of study has implications for vegetation management practices and policy. Given the influential effects of weather and climate on pollen, and the significant health impacts globally, the total effect of any future environmental and climatic changes on aeroallergen production and spread will be significant. The overall impact of climate change on pollen production and spread remains highly uncertain, and there is a need for further understanding of pollen-related health impact information. There are a number of ways air quality interacts with the impact of pollen. Further understanding of the risks of co-exposure to both pollen and air pollutants is needed to better inform public health policy. Furthermore, thunderstorms have been linked to asthma epidemics, especially during the grass pollen seasons. It is thought that allergenic pollen plays a role in this “thunderstorm asthma.” To reduce the exposure to, or impact from, pollen grains in the air, a number of adaptation and mitigation options may be adopted. Many of these would need to be done either through policy changes, or at a local or regional level, although some can be done by individuals to minimize their exposure to pollen they are sensitive to. Improved aeroallergen forecast models could be developed to provide detailed taxon-specific, localized information to the public. One challenge will be combining the many different sources of aeroallergen data that are likely to become available in future into numerical forecast systems. Examples of these potential inputs are automated observations of aeroallergens, real-time phenological observations and remote sensing of vegetation, social sensing, DNA analysis of specific aeroallergens, and data from symptom trackers or personal monitors. All of these have the potential to improve the forecasts and information available to the public.


2000 ◽  
Vol 27 (10) ◽  
pp. 893 ◽  
Author(s):  
Lewis H. Ziska ◽  
Frances A. Caulfield

Although environmental factors such as precipitation and temperature are recognized as influencing pollen production, the impact of rising atmospheric carbon dioxide concentration ([CO2]) on the potential growth and pollen production of hay-fever-inducing plants is unknown. Here we present measurements of growth and pollen production of common ragweed (Ambrosia artemisiifolia L.) from pre-industrial [CO2] (280 mol mol–1) to current concentrations (370 mol mol–1) to a projected 21st century concentration (600 mol mol–1). We found that exposure to current and elevated [CO2] increased ragweed pollen production by 131 and 320%, respectively, compared to plants grown at pre-industrial [CO2]. The observed stimulations of pollen production from the pre-industrial [CO2] were due to an increase in the number (at 370 mol mol–1) and number and size (at 600 mol mol–1) of floral spikes. Overall, floral weight as a percentage of total plant weight decreased (from 21% to 13%), while investment in pollen increased (from 3.6 to 6%) between 280 and 600 mol mol–1 CO2. Our results suggest that the continuing increase in atmospheric [CO2] could directly influence public health by stimulating the growth and pollen production of allergy-inducing species such as ragweed.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 145 ◽  
Author(s):  
Jesús Rojo ◽  
Jose Oteros ◽  
Antonio Picornell ◽  
Franziska Ruëff ◽  
Barbora Werchan ◽  
...  

Airborne pollen concentrations vary depending on the location of the pollen trap with respect to the pollen sources. Two Hirst-type pollen traps were analyzed within the city of Munich (Germany): one trap was located 2 m above ground level (AGL) and the other one at rooftop (35 m AGL), 4.2 km apart. In general, 1.4 ± 0.5 times higher pollen amounts were measured by the trap located at ground level, but this effect was less than expected considering the height difference between the traps. Pollen from woody trees such as Alnus, Betula, Corylus, Fraxinus, Picea, Pinus and Quercus showed a good agreement between the traps in terms of timing and intensity. Similar amounts of pollen were recorded in the two traps when pollen sources were more abundant outside of the city. In contrast, pollen concentrations from Cupressaceae/Taxaceae, Carpinus and Tilia were influenced by nearby pollen sources. The representativeness of both traps for herbaceous pollen depended on the dispersal capacity of the pollen grains, and in the case of Poaceae pollen, nearby pollen sources may influence the pollen content in the air. The timing of the pollen season was similar for both sites; however, the season for some pollen types ended later at ground level probably due to resuspension processes that would favor recirculation of pollen closer to ground level. We believe measurements from the higher station provides a picture of background pollen levels representative of a large area, to which local sources add additional and more variable pollen amounts.


Sign in / Sign up

Export Citation Format

Share Document