scholarly journals Allergenic pollen production across a large city for common ragweed (Ambrosia artemisiifolia)

2019 ◽  
Vol 190 ◽  
pp. 103615 ◽  
Author(s):  
Daniel S.W. Katz ◽  
Stuart A. Batterman
2018 ◽  
Vol 2 (S1) ◽  
pp. 7-7
Author(s):  
Daniel S. W. Katz ◽  
Stuart Batterman

OBJECTIVES/SPECIFIC AIMS: One of the key difficulties in predicting allergenic pollen exposures has been a lack of information on source plant location and abundance. However, the increasing availability of spatially explicit data from remote sensing offers new opportunities to create comprehensive inventories of allergenic pollen producing plants. METHODS/STUDY POPULATION: In this study, we use a spatially oriented field survey to map common ragweed (Ambrosia artemisiifolia) in Detroit, MI, USA. We then combine this with remote sensing imagery and LiDAR to predict ragweed presence and potential pollen production across 344 km2 of Detroit. Finally, we compare this with measurements of airborne pollen concentrations collected throughout the city. RESULTS/ANTICIPATED RESULTS: Our initial results show that ragweed is present in ~2% of the city, and its presence and abundance are strongly associated with demolished building (p<0.001). The uneven distribution of ragweed plants across the city leads to substantially higher pollen concentrations in neighborhoods where more buildings have been recently demolished. DISCUSSION/SIGNIFICANCE OF IMPACT: Our approach offers an effective way to quantify allergenic pollen production, airborne concentrations, and exposures across a large metropolitan area. This in turn provides insight on how to best reduce airborne pollen concentrations: in this case, by changing post-demolition land management practices.


2000 ◽  
Vol 27 (10) ◽  
pp. 893 ◽  
Author(s):  
Lewis H. Ziska ◽  
Frances A. Caulfield

Although environmental factors such as precipitation and temperature are recognized as influencing pollen production, the impact of rising atmospheric carbon dioxide concentration ([CO2]) on the potential growth and pollen production of hay-fever-inducing plants is unknown. Here we present measurements of growth and pollen production of common ragweed (Ambrosia artemisiifolia L.) from pre-industrial [CO2] (280 mol mol–1) to current concentrations (370 mol mol–1) to a projected 21st century concentration (600 mol mol–1). We found that exposure to current and elevated [CO2] increased ragweed pollen production by 131 and 320%, respectively, compared to plants grown at pre-industrial [CO2]. The observed stimulations of pollen production from the pre-industrial [CO2] were due to an increase in the number (at 370 mol mol–1) and number and size (at 600 mol mol–1) of floral spikes. Overall, floral weight as a percentage of total plant weight decreased (from 21% to 13%), while investment in pollen increased (from 3.6 to 6%) between 280 and 600 mol mol–1 CO2. Our results suggest that the continuing increase in atmospheric [CO2] could directly influence public health by stimulating the growth and pollen production of allergy-inducing species such as ragweed.


2016 ◽  
Vol 13 (9) ◽  
pp. 2769-2786 ◽  
Author(s):  
Li Liu ◽  
Fabien Solmon ◽  
Robert Vautard ◽  
Lynda Hamaoui-Laguel ◽  
Csaba Zsolt Torma ◽  
...  

Abstract. Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000–2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen spread are evaluated through calculation of exposure time above health-relevant threshold levels. The total risk area with concentration above 5 grains m−3 takes up 29.5 % of domain. The longest exposure time occurs on Pannonian Plain, where the number of days per year with the daily concentration above 20 grains m−3 exceeds 30.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ingvild Loubet ◽  
Laëtitia Caddoux ◽  
Séverine Fontaine ◽  
Séverine Michel ◽  
Fanny Pernin ◽  
...  

AbstractAmbrosia artemisiifolia L. (common ragweed) is a globally invasive, allergenic, troublesome arable weed. ALS-inhibiting herbicides are broadly used in Europe to control ragweed in agricultural fields. Recently, ineffective treatments were reported in France. Target site resistance (TSR), the only resistance mechanism described so far for ragweed, was sought using high-throughput genotyping-by-sequencing in 213 field populations randomly sampled based on ragweed presence. Additionally, non-target site resistance (NTSR) was sought and its prevalence compared with that of TSR in 43 additional field populations where ALS inhibitor failure was reported, using herbicide sensitivity bioassay coupled with ALS gene Sanger sequencing. Resistance was identified in 46 populations and multiple, independent resistance evolution demonstrated across France. We revealed an unsuspected diversity of ALS alleles underlying resistance (9 amino-acid substitutions involved in TSR detected across 24 populations). Remarkably, NTSR was ragweed major type of resistance to ALS inhibitors. NTSR was present in 70.5% of the resistant plants and 74.1% of the fields harbouring resistance. A variety of NTSR mechanisms endowing different resistance patterns evolved across populations. Our study provides novel data on ragweed resistance to herbicides, and emphasises that local resistance management is as important as mitigating gene flow from populations where resistance has arisen.


Author(s):  
A. S. Golubev ◽  
I. P. Borushko ◽  
V. I. Dolzhenko

The use of glyphosate (720-2880 g/h a.i.) and ammonium glufosinate herbicides (375-1500 g/h a.i.) to control of common ragweed (Ambrosia artemisiifolia L.) has been studied in trials (2013-2018) in the vineyards of Rkatsiteli, Liang and Cabernet Sauvignon in Abinsk district of Krasnodar region. Accounting of weeds was done by a quantitative method with counting the number of each weed species in each plot. Counts were performed before the treatment and in 15, 30 and 45 days after spraying. The effi cacy of herbicide was determined in relation to the untreated control and expressed as a percentage. The main evaluation criterion was the eff ectiveness of 100 % in one of the accounts or the average (for all counts) effi ciency of more than 90 %. The results showed that in 95 % of trials spraying of 1440 g/h of glyphosate 1440 g/h of glyphosate (a.i.) and higher ensured processing effi ciency exceeding 90 %. Herbicides such as Roundup, containing 360 g/l of isopropylamine salt, can be recommended for use to control of common ragweed in the application rate 4.0 l/ha. Destruction of all common ragweed observed when using not less than 600 g/h glufosinate ammonium. Thus, Herbicides such as Basta, containing 150 g/l of ammonium glufosinate, to control of common ragweed should be applied by fractional application vegetative weeds (2.5 l/h + 1.5 l/h).


NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 193-221
Author(s):  
Rea Maria Hall ◽  
Bernhard Urban ◽  
Hana Skalova ◽  
Lenka Moravcová ◽  
Ulrike Sölter ◽  
...  

Common ragweed (Ambrosia artemisiifolia L.) is an annual Asteraceae species native to North America which is highly invasive across Europe and has harmful impacts, especially on human health and agriculture. Besides its wide ecological range, particularly its high reproductive power by seeds is promoting its spread to various habitats and regions. To prevent further spread and to control the plant, the European Commission funded projects and COST-Actions involving scientists from all over Europe. A joint trial was set up comprising eight different laboratories from Europe to study seed viability variation in different seed samples. Three different testing methods (viability test with 2,3,5-triphenyltetrazolium chloride (TTC), a germination test combined with a subsequent TTC test and a crush test) were tested within the EU-COST-Action SMARTER network to four different seed origins. The viability test results from different laboratories were compared for variation amongst tests and laboratories. The main aim was to optimise the reliability of testing procedures, but results revealed not only significant effects of seed origin and seed age on seed viability, but also considerable differences between the output of the individual testing methods and furthermore between laboratories. Due to these significant differences in the results of the testing labs, additionally a second test was set up. Twelve Austrian ragweed populations were used for TTC testing to obtain a precise adjustment of the testing method as well as a tight guideline for interpreting the results, particularly for the TTC state “intermediate” since a proper classification of TTC-intermediate coloured seeds is still a challenge when determining viability rates.


Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 696-696 ◽  
Author(s):  
Gy. Bohár ◽  
I. Schwarczinger

During a survey for potential biocontrol agents of common ragweed (Ambrosia artemisiifolia var. elatior (L.) Descourt) in 1997, plants exhibiting irregular, brown leaf spots were collected repeatedly from six roadside locations in Pest County, Hungary. Many pycnidia developed in the necrotic tissues on detached leaves after 2 days in moist chambers. Pycnidia were globose to slightly flattened, brown, thin walled, 58 to 100 μm in diameter, with a definite ostiole. Conidia were hyaline, filiform with 2 to 3 septa, and 22.0 to 38.0 × 0.7 to 1.3 μm in size. The fungus was isolated on potato dextrose agar and identified as a Septoria sp. To confirm pathogenicity, potted ragweed seedlings were sprayed with a suspension of 5 × 106 conidia per ml from pure cultures of the Septoria sp., placed in a dew chamber for 72 h, and then grown in a greenhouse at 16 to 24°C. After 2 weeks, inoculated plants developed small, brown lesions on leaves and leaf petioles. Three weeks after inoculation, necrotic lesions had enlarged to 1 to 3 mm in diameter with irregular, distinct margins and light brown centers. The lesions on the lower leaves were larger and more numerous than on leaves nearer the tops of the plants. Pycnidia developed on the senescent leaves after 1 month. Infected leaves became completely necrotic and occasionally entire plants died. The pathogen was reisolated from all inoculated plants, thus satisfying Koch's postulates. A voucher specimen was deposited at the Department of Botany of the Hungarian Natural History Museum in Buda-pest (No. BP 92081). Septoria ambrosiae Hemmi et Naito was described on ragweed in Japan (1), but our isolate is morphologically distinct from that species. This is the first report of a Septoria sp. on A. artemisiifolia in Europe. Reference: (1) N. Naito. Mem. Coll. Agric. Kyoto 47:41, 1940.


Sign in / Sign up

Export Citation Format

Share Document