scholarly journals Changes in the concentration of pollen over an 11-year period in a Polish urban environment

2016 ◽  
Vol 69 (4) ◽  
Author(s):  
Barbara Majkowska-Wojciechowska ◽  
Zofia Balwierz ◽  
Marek L. Kowalski

Recent studies suggest that climate change can influence plant reproductive systems and have an impact on the increase in allergenic pollen in atmospheric air; highly allergenic pollen may intensify the allergic response in people. The aim of our study was to evaluate the seasonal dynamic concentration of the most allergenic pollen taxa, i.e., the following trees: <em>Alnus</em>, <em>Corylus</em>, <em>Betula</em>, and herbaceous plants: grasses (Poaceae), <em>Artemisia</em>, and <em>Ambrosia</em>, in the long-term period of 2003–2013 in the city of Lodz, Poland. Weekly airborne pollen concentrations were evaluated with a volumetric Lansoni pollen trap. The beginning and the end of the season were calculated by the 98% method. The birch (<em>Betula</em>) pollen was at the highest level and accounted for 79%, followed by alder (<em>Alnus</em>) – 19%, and hazel (<em>Corylus</em>) – 2%. Among the herbaceous taxa, grasses (Poaceae) pollen dominated – 79%, followed by mugwort (<em>Artemisia</em>) – 18%, and ragweed (<em>Ambrosia</em>) – 3%. Our findings indicate a lack of qualitative and quantitative change in the pollen produced over the 11-year period.

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 145 ◽  
Author(s):  
Jesús Rojo ◽  
Jose Oteros ◽  
Antonio Picornell ◽  
Franziska Ruëff ◽  
Barbora Werchan ◽  
...  

Airborne pollen concentrations vary depending on the location of the pollen trap with respect to the pollen sources. Two Hirst-type pollen traps were analyzed within the city of Munich (Germany): one trap was located 2 m above ground level (AGL) and the other one at rooftop (35 m AGL), 4.2 km apart. In general, 1.4 ± 0.5 times higher pollen amounts were measured by the trap located at ground level, but this effect was less than expected considering the height difference between the traps. Pollen from woody trees such as Alnus, Betula, Corylus, Fraxinus, Picea, Pinus and Quercus showed a good agreement between the traps in terms of timing and intensity. Similar amounts of pollen were recorded in the two traps when pollen sources were more abundant outside of the city. In contrast, pollen concentrations from Cupressaceae/Taxaceae, Carpinus and Tilia were influenced by nearby pollen sources. The representativeness of both traps for herbaceous pollen depended on the dispersal capacity of the pollen grains, and in the case of Poaceae pollen, nearby pollen sources may influence the pollen content in the air. The timing of the pollen season was similar for both sites; however, the season for some pollen types ended later at ground level probably due to resuspension processes that would favor recirculation of pollen closer to ground level. We believe measurements from the higher station provides a picture of background pollen levels representative of a large area, to which local sources add additional and more variable pollen amounts.


2018 ◽  
Vol 2 (S1) ◽  
pp. 7-7
Author(s):  
Daniel S. W. Katz ◽  
Stuart Batterman

OBJECTIVES/SPECIFIC AIMS: One of the key difficulties in predicting allergenic pollen exposures has been a lack of information on source plant location and abundance. However, the increasing availability of spatially explicit data from remote sensing offers new opportunities to create comprehensive inventories of allergenic pollen producing plants. METHODS/STUDY POPULATION: In this study, we use a spatially oriented field survey to map common ragweed (Ambrosia artemisiifolia) in Detroit, MI, USA. We then combine this with remote sensing imagery and LiDAR to predict ragweed presence and potential pollen production across 344 km2 of Detroit. Finally, we compare this with measurements of airborne pollen concentrations collected throughout the city. RESULTS/ANTICIPATED RESULTS: Our initial results show that ragweed is present in ~2% of the city, and its presence and abundance are strongly associated with demolished building (p<0.001). The uneven distribution of ragweed plants across the city leads to substantially higher pollen concentrations in neighborhoods where more buildings have been recently demolished. DISCUSSION/SIGNIFICANCE OF IMPACT: Our approach offers an effective way to quantify allergenic pollen production, airborne concentrations, and exposures across a large metropolitan area. This in turn provides insight on how to best reduce airborne pollen concentrations: in this case, by changing post-demolition land management practices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Polling ◽  
Chen Li ◽  
Lu Cao ◽  
Fons Verbeek ◽  
Letty A. de Weger ◽  
...  

AbstractMonitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera (Urtica and Parietaria) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with > 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.


Aerobiologia ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 669-682 ◽  
Author(s):  
Antonella Cristofori ◽  
Edith Bucher ◽  
Michele Rossi ◽  
Fabiana Cristofolini ◽  
Veronika Kofler ◽  
...  

AbstractArtemisia pollen is an important aeroallergen in late summer, especially in central and eastern Europe where distinct anemophilous Artemisia spp. produce high amounts of pollen grains. The study aims at: (i) analyzing the temporal pattern of and changes in the Artemisia spp. pollen season; (ii) identifying the Artemisia species responsible for the local airborne pollen load.Daily pollen concentration of Artemisia spp. was analyzed at two sites (BZ and SM) in Trentino-Alto Adige, North Italy, from 1995 to 2019.The analysis of airborne Artemisia pollen concentrations evidences the presence of a bimodal curve, with two peaks, in August and September, respectively. The magnitude of peak concentrations varies across the studied time span for both sites: the maximum concentration at the September peak increases significantly for both the BZ (p < 0.05) and SM (p < 0.001) site. The first peak in the pollen calendar is attributable to native Artemisia species, with A. vulgaris as the most abundant; the second peak is mostly represented by the invasive species A. annua and A. verlotiorum (in constant proportion along the years), which are causing a considerable increase in pollen concentration in the late pollen season in recent years.. The spread of these species can affect human health, increasing the length and severity of allergenic pollen exposure in autumn, as well as plant biodiversity in both natural and cultivated areas, with negative impacts on, e.g., Natura 2000 protected sites and crops.


2002 ◽  
Vol 27 ◽  
pp. 49-63 ◽  
Author(s):  
F. Javier Rodríguez-Rajo ◽  
M. Victoria Jato ◽  
M. Jesús Aira

RESUMEN. El polen de Poaceae en la atmósfera de Lugo y su relación con los parámetros meteorológicos (1999-2001). Se han estudiado las concentraciones de polen de Poaceae presente en la atmósfera de la ciudad de Lugo durante 3 años (1999-2001). Para ello se ha utilizado un captador volumétrico tipo Hirst, modelo Lanzoni VPPS-2000. El polen de Poaceae es el más abundante y su porcentaje frente al total de polen anual es de un 38-40%. La cantidad total de polen anual es de 8.400 granos como resultado de la media de los tres años de estudio, con un período de polinización durante los meses de Junio y Julio. A lo largo del día los máximos de concentración tienen lugar durante la tarde. Se ha realizado un análisis de correlación con los principales parámetros meteorológicos, siendo la temperatura máxima la variable que presentó el coeficiente más elevado. La suma acumulada de la temperatura máxima y la regresión múltiple integrando la temperatura máxima y las concentraciones de polen del día anterior como estimadores, resultaron métodos válidos y complementarios para realizar la predicción del inicio del periodo de polinización y de las concentraciones medias diarias que se alcanzan durante el periodo de polinización principal respectivamente.Palabras clave. Polen, Lugo, Meteorología, Predicción, lntradiario, Poaceae.ABSTRACT. The Poaceae pollen in the atmosphere of Lugo and its relationship with meteorological parameters ( 1999-2001). The pollen concentrations of Poaceae in the atmosphere of the city of Lugo has been studied during 3 years (1999-2001). A volumetric sampler type Hirst, model Lanzoni VPPS-2000 has been used. The Poaceae pollen is the most abundant and its percentage with respect to the total annual pollen ranged from 38-40 %. The annual total quantity of pollen of Poaceae were 8.400 grains as average of the three years studied, with a period of pollination during the months of June and July. The daily maximum concentrations take place during the evening. An analysis of correlation has been carried out between pollen concentrations and the main meteorological parameters, the maximum temperature being the variable that presented the highest coefficient value. The sum of maximum temperatures and the multiple regression integrating maximum temperature and pollen concentrations of the previous day as predictors, were successful and complementary methods in order to predict the beginning of the pollination period and the daily mean concentrations reached during the main pollen season respectively.Key words. Pollen, Lugo, Meteorology, Prediction, Intradiurnal, Poaceae.


Author(s):  
Claudio Pérez ◽  
Mauro Covi ◽  
María Gassmann ◽  
Ana Ulke

Background and aims: The study of the seasonal and intra-seasonal variability of the airborne pollen concentration is of paramount importance to understand the relationships with the emitting vegetation and the atmospheric parameters that modulate pollen transport. This research aims to study these variabilities in Sunchales, a city located in the center-east of Argentina. M&M: Atmospheric monitoring was carried out with a Burkard trap during two seasons in 2012 and 2013 on the outskirts of the city. Results & Conclusions: The pollination periods of the studied pollen types show a delay in 2013 compared to the previous year, presumably related to a greater amount of cumulative heat units in 2012. However, the integral pollen for the period 2013 was 1.4 times higher than 2012, a fact that is not explained by accumulated precipitation but by the time of day when the hydrometeors occur. Binned pollen concentrations show that the highest concentrations coincide with the urban location of the tree sources while the herbaceous ones show an association with a rural origin. Regarding the intra-seasonal variability, the highest proportion of the airborne pollen variance accumulates on the synoptic-scale (80 - 60%) with periods between 3 and 10 days. During 2012 long waves predominated (> 5.5 days) while in 2013 medium waves prevailed (3.9 - 5.5 days).


2020 ◽  
Author(s):  
Marcel Polling ◽  
Chen Li ◽  
Lu Cao ◽  
Fons Verbeek ◽  
Letty de Weger ◽  
...  

Abstract Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen are traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of a Convolutional Neural Network (CNN) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera (Urtica and Parietaria) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species have very low allergenic relevance, those from several species of Parietaria are severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these to train the CNN model VGG16. The model shows that Urticaceae pollen can be distinguished with 98.3% accuracy. We then apply our model on Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.


2015 ◽  
Vol 68 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Dorota Myszkowska ◽  
Katarzyna Piotrowicz ◽  
Monika Ziemianin ◽  
Kazimiera Chłopek ◽  
Katarzyna Dąbrowska-Zapart ◽  
...  

The paper refers to the estimation of Poaceae pollen seasons in Poland in selected areas. The aim of the study was to present the long-term variability of the start, end and duration of grass pollen seasons and the seasonal pollen index (SPI) in Poland against a background of the meteorological conditions over pollen seasons. The study was performed in eight Polish cities in 1992–2014 (the common seasons were 2003–2012). Pollen season start was relatively stable in the studied period, the seasons began about the 10th of May, a bit earlier in the south part of Poland. Pollen season ends were more changeable in comparison to the season start and fluctuated from the middle of July to the middle of September. SPI clearly depended on temperature and precipitation in April–August. Daily maximum pollen concentrations were achieved between the end of May and the first decade of July and no evident relationship between this day and weather conditions was found, apart from 2004.


2020 ◽  
Author(s):  
Arne Verstraeten ◽  
Elena Gottardini ◽  
Nicolas Bruffaerts ◽  
Fabiana Cristofolini ◽  
Elena Vanguelova ◽  
...  

&lt;p&gt;Pollen is known to affect forest throughfall biochemistry, but underlying mechanisms are not fully understood. We used generalized additive mixed modelling to study the relationship between long-term series of measured throughfall fluxes in spring (April&amp;#8211;June) at forest plots and corresponding airborne pollen concentrations (Seasonal Pollen Integral, SPIn) from nearby aerobiological monitoring stations. The forest plots were part of the intensive long term monitoring (Level II) network of the UNECE International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) with dominant tree genera &lt;em&gt;Fagus&lt;/em&gt;, &lt;em&gt;Quercus&lt;/em&gt;, &lt;em&gt;Pinus&lt;/em&gt; and &lt;em&gt;Picea&lt;/em&gt;, and were distributed all across Europe. We also conducted a 7-day laboratory dissolution experiment with bud scales and flower stalks of European beech (&lt;em&gt;Fagus sylvatica&lt;/em&gt; L.), pollen of beech, common oak (&lt;em&gt;Quercus robur&lt;/em&gt; L.), silver birch (&lt;em&gt;Betula pendula&lt;/em&gt; L.), Scots pine (&lt;em&gt;Pinus sylvestris&lt;/em&gt; L.), Corsican pine (&lt;em&gt;Pinus nigra&lt;/em&gt; Arnold ssp. &lt;em&gt;laricio&lt;/em&gt; (Poiret) Maire), Norway spruce (&lt;em&gt;Picea abies&lt;/em&gt; (L.) Karst.) and sterilized pollen of silver birch in a nitrate (NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;-N) solution (11.3 mg N L&lt;sup&gt;-1&lt;/sup&gt;). Throughfall fluxes of potassium (K&lt;sup&gt;+&lt;/sup&gt;), ammonium (NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;-N), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) showed a positive relationship with SPIn whereas NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;-N fluxes showed a negative relationship with SPIn. In years with massive seed production of beech and oak SPIn and throughfall fluxes of K&lt;sup&gt;+&lt;/sup&gt; and DOC were higher, but fluxes of NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;-N were lower. The experiment broadly confirmed the findings based on field data. Within two hours, pollen released large quantities of K&lt;sup&gt;+&lt;/sup&gt;, phosphate, DOC and DON, and lesser amounts of sulphate, sodium and calcium. After 24-48 hours, NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;-N started to disappear, predominantly in the treatments with broadleaved pollen, while concentrations of nitrite and NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;-N increased. At the end of the experiment, the inorganic nitrogen (DIN) was reduced, presumably because it was lost as gaseous nitric oxide (NO). There was no difference for sterilized pollen, indicating that the involvement of microbial activity was limited in above N transformations. Our results show that pollen dispersal might be an overlooked factor in forest nutrient cycling and might induce complex canopy N transformations, although the net-impact on N throughfall fluxes is rather low.&lt;/p&gt;


2021 ◽  
Vol 2 ◽  
Author(s):  
Letty A. de Weger ◽  
Nicolas Bruffaerts ◽  
Mieke M. J. F. Koenders ◽  
Willem W. Verstraeten ◽  
Andy W. Delcloo ◽  
...  

Airborne pollen is a major cause of allergic rhinitis, affecting between 10 and 30% of the population in Belgium, the Netherlands, and Luxembourg (Benelux). Allergenic pollen is produced by wind pollinating plants and released in relatively low to massive amounts. Current climate changes, in combination with increasing urbanization, are likely to affect the presence of airborne allergenic pollen with respect to exposure intensity, timing as well as duration. Detailed analysis of long-term temporal trends at supranational scale may provide more comprehensive insight into these phenomena. To this end, the Spearman correlation was used to statistically compare the temporal trends in airborne pollen concentration monitored at the aerobiological stations which gathered the longest time-series (30–44 years) in the Benelux with a focus on the allergenic pollen taxa: Alnus, Corylus, Betula, Fraxinus, Quercus, Platanus, Poaceae, and Artemisia. Most arboreal species showed an overall trend toward an increase in the annual pollen integral and peak values and an overall trend toward an earlier start and end of the pollen season, which for Betula resulted in a significant decrease in season length. For the herbaceous species (Poaceae and Artemisia), the annual pollen integral and peak values showed a decreasing trend. The season timing of Poaceae showed a trend toward earlier starts and longer seasons in all locations. In all, these results show that temporal variations in pollen levels almost always follow a common trend in the Benelux, suggesting a similar force of climate change-driven factors, especially for Betula where a clear positive correlation was found between changes in temperature and pollen release over time. However, some trends were more local-specific indicating the influence of other environmental factors, e.g., the increasing urbanization in the surroundings of these monitoring locations. The dynamics in the observed trends can impact allergic patients by increasing the severity of symptoms, upsetting the habit of timing of the season, complicating diagnosis due to overlapping pollen seasons and the emergence of new symptoms due allergens that were weak at first.


Sign in / Sign up

Export Citation Format

Share Document