scholarly journals 3252 Neuroclinical fingerprint of high-risk psychosis

2019 ◽  
Vol 3 (s1) ◽  
pp. 49-50
Author(s):  
Keisha Novak ◽  
Roman Kotov ◽  
Dan Foti

OBJECTIVES/SPECIFIC AIMS: The study aims to utilize event-related potentials (ERPs) coupled with observable reports of symptoms to comprehensively understand neurological and symptomatic profile of individuals at risk for developing psychosis. The study is a short-term longitudinal design which allows for examination of course as well as structure of illness. The primary outcome is to map known neuroclinical deficits among individuals with schizophrenia onto a high-risk, non-clinical sample. A secondary aim of the study is to demonstrate prediction of symptom severity over time measured by a combination of ERPs and clinical symptom scores. METHODS/STUDY POPULATION: Recruited participants are pre-screened for eligibility via telephone interview. This process includes administration of Community Assessment of Psychotic Experiences (CAPE), and the Mini International Neuropsychiatric Interview (MINI). During in-person lab assessment, participants provide written informed consent and complete a battery of ERP tasks, semi-structured clinical interviews, and self-report questionnaires that assess for presence and severity of sub-threshold psychotic-like experiences. Six months following the laboratory visit, participants will be provided a link to online questionnaires that were completed during laboratory visit in order to reassess presence and severity. RESULTS/ANTICIPATED RESULTS: The target number of participants included in this study is 60. We hope to recruit individuals who range in symptom severity as measured by CAPE. It is of interest to determine relationship among known deficits in individuals with schizophrenia and individuals exhibiting sub-clinical symptoms of psychosis. Additionally, we plan to examine ERPs and symptoms together as a “profile” of high risk psychosis, yielding more robust information about this population than any one ERP or symptom measure alone. The within subjects design of this study allows for examination of symptom progression and potential prediction of symptoms based on brain activity. Many studies examine only single ERP components thus limiting the ability to draw broader conclusions regarding general cognitive frameworks among populations. We use a combination of well-validated ERPs (i.e. P300, N400, ERN) with behavioral and symptom data in order to predict variation in symptoms over the course of 6 months. The project aims to take a novel approach at identifying high-risk profiles based on neurophysiological and behavioral data and using this as a basis for predicting symptom severity across time. DISCUSSION/SIGNIFICANCE OF IMPACT: Individuals endorsing psychotic-like experiences are at heightened risk for developing a psychotic disorder in the future, and have been linked with similar social, behavioral, and emotional risk factors similar to those of schizophrenia. Subjective data (e.g. self-report, interview) sheds light on important information regarding observable symptom manifestation; however, neural measures can detect relatively subtle deficits in information processing that precede and predict overt symptom onset, which necessitates other important methodological considerations. Specifically, extant literature has shown that quantifiable indices of cognitive deficits may represent a vulnerability to psychosis in high-risk populations, and can be measured using event-related potentials (ERPs). This study integrates a psychophysiological approach by mapping neural deficits from schizophrenia onto a high-risk sample. Many studies examine only single ERP components thus limiting the ability to draw broader conclusions regarding general cognitive frameworks among populations. We use a combination of well-validated ERPs (i.e. P300, N400, ERN) with behavioral and symptom data in order to predict variation in symptoms over the course of 6 months. The project aims to take a novel approach at identifying high-risk profiles based on neurophysiological and behavioral data and using this as a basis for predicting symptom severity across time. We will parse heterogeneity within a high-risk group in order to create innovative profiles and potentially predict variation in course of symptoms. In other words, a “fingerprint” physiologic aberration may be exhibited within high-risk individuals and can be used as biomarkers to identify those at risk even before onset of observable symptoms.

2020 ◽  
Vol 4 (s1) ◽  
pp. 141-141
Author(s):  
Keisha Novak ◽  
Sam Buck ◽  
Roman Kotov ◽  
Dan Foti

OBJECTIVES/GOALS: The study aims to utilize event-related potentials (ERPs) coupled with observable reports of symptoms to comprehensively understand neurological and symptomatic profile of individuals at risk for developing psychosis. The study is a short-term longitudinal design which allows for examination of course as well as structure of illness. METHODS/STUDY POPULATION: This study uses a combination of well-validated ERPs (P300, N400, ERN) and symptom data to predict variation in symptoms over time. We parse heterogeneity within a high-risk group to create innovative profiles and predict variation in course of symptoms. Data collection is ongoing (n = 35; target N = 100). Methods include a battery of ERP tasks tracking neural processes associated with attention, language processing, and executive function (P300, N400, ERN), along with assessment of symptom type and severity. Analyses include how ERPs correlate with severity of risk and symptom dimensions (positive, negative, disorganized). We examine whether individual versus global ERP aberrations (P300, N400, ERN) predict individual versus global symptom domain severity (positive, negative, disorganized), or vice versa. RESULTS/ANTICIPATED RESULTS: Symptom domain scores were elevated compared to general population on positive (M = 1.65, SD = .36), negative (M = 1.9 SD = .42), and depressive (M = 1.94, SD = .40) domains. Small to medium effect sizes emerged for P300 profile (r’s = −.001 to −.41) and ERN profile (r’s = −.03 to −.37), though small effect sizes for N400 profile (r’s = −.06 to .29). Analyses were run to determine the degree to which profiles of risk were similar: P300/ERN (r = −.09), ERN/N400 (r = −.39), and N400/P3 (r = −.20). Additional analyses suggest potential mediating effects of cognition on neural activity and symptoms. DISCUSSION/SIGNIFICANCE OF IMPACT: We use a combination of well-validated ERPs (i.e. P300, N400, ERN) with behavioral and symptom data to predict variation in symptoms over time. A “fingerprint” physiologic aberration may be exhibited within high-risk individuals and can be used as biomarkers to identify those at risk even before onset of observable symptoms.


2013 ◽  
Vol 88 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Mirjam J. van Tricht ◽  
Emma C. Harmsen ◽  
Johannes H.T.M. Koelman ◽  
Lo J. Bour ◽  
Thérèse A. van Amelsvoort ◽  
...  

2018 ◽  
Vol 49 (4) ◽  
pp. 215-225 ◽  
Author(s):  
Jennifer R. Lepock ◽  
Romina Mizrahi ◽  
Michele Korostil ◽  
R. Michael Bagby ◽  
Elizabeth W. Pang ◽  
...  

There is emerging evidence that identification and treatment of individuals in the prodromal or clinical high-risk (CHR) state for psychosis can reduce the probability that they will develop a psychotic disorder. Event-related brain potentials (ERPs) are a noninvasive neurophysiological technique that holds promise for improving our understanding of neurocognitive processes underlying the CHR state. We aimed to systematically review the current literature on cognitive ERP studies of the CHR population, in order to summarize and synthesize the results, and their implications for our understanding of the CHR state. Across studies, amplitudes of the auditory P300 and duration mismatch negativity (MMN) ERPs appear reliably reduced in CHR individuals, suggesting that underlying impairments in detecting changes in auditory stimuli are a sensitive early marker of the psychotic disease process. There are more limited data indicating that an earlier-latency auditory ERP response, the N100, is also reduced in amplitude, and in the degree to which it is modulated by stimulus characteristics, in the CHR population. There is also evidence that a number of auditory ERP measures (including P300, MMN and N100 amplitudes, and N100 gating in response to repeated stimuli) can further refine our ability to detect which CHR individuals are most at risk for developing psychosis. Thus, further research is warranted to optimize the predictive power of algorithms incorporating these measures, which could help efforts to target psychosis prevention interventions toward those most in need.


2007 ◽  
Vol 19 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Alexandra M. Hogan ◽  
Elinor L. Butterfield ◽  
Luke Phillips ◽  
Julie A. Hadwin

The behavioral inhibition system [Gray, J. A. The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press, 1982] proposes that anxiety is associated with the processing of novel stimuli. We aimed to explore this relationship by recording auditory event-related potentials associated with unexpected novel noises in typically developing children. Children aged 10–14 years with low (n = 12) and high (n = 11) self-report trait anxiety were assessed using a novelty oddball task. The N1 associated with novel stimuli, specifically the “N1c” component maximal at temporal lobe sites, was of significantly longer latency (p = .014) and greater amplitude (p = .004) in the high compared with the low anxious group. This group difference was supported by linear correlations between N1c amplitude and trait anxiety scores. There was no effect of anxiety on the later novelty P3. These data suggest a subtle moderating role of trait anxiety on brain response to novelty, and further research with clinically anxious children is indicated.


1994 ◽  
Vol 6 (3) ◽  
pp. 204-219 ◽  
Author(s):  
Peter Praamstra ◽  
Antje S. Meyer ◽  
Willem J. M. Levelt

Two experiments examined phonological priming effects on reaction times, error rates, and event-related brain potential (ERP) measures in an auditory lexical decision task. In Experiment 1 related prime-target pairs rhymed, and in Experiment 2 they alliterated (i.e., shared the consonantal onset and vowel). Event-related potentials were recorded in a delayed response task. Reaction times and error rates were obtained both for the delayed and an immediate response task. The behavioral data of Experiment 1 provided evidence for phonological facilitation of word, but not of nonword decisions. The brain potentials were more negative to unrelated than to rhyming word-word pairs between 450 and 700 rnsec after target onset. This negative enhancement was not present for word-nonword pairs. Thus, the ERP results match the behavioral data. The behavioral data of Experiment 2 provided no evidence for phonological Facilitation. However, between 250 and 450 msec after target onset, i.e., considerably earlier than in Experiment 1, brain potentials were more negative for unrelated than for alliterating Word-word and word-nonword pairs. It is argued that the ERP effects in the two experiments could be modulations of the same underlying component, possibly the N400. The difference in the timing of the effects is likely to be due to the fact that the shared segments in related stimulus pairs appeared in different word positions in the two experiments.


2017 ◽  
Vol 41 (S1) ◽  
pp. S635-S635
Author(s):  
B. Sutcubasi Kaya ◽  
B. Metin ◽  
F.Z. Krzan ◽  
N. Tarhan ◽  
C. Tas

IntroductionAlterations in reward processing are frequently reported in ADHD. One important factor that affects reward processing is the quality of reward, as social and monetary, rewards are processed by different neural networks. However, effect of reward type on reward processing in ADHD was not extensively studied.AimsWe aimed to explore the effect of reward type (i.e., social or monetary) on different phases of reward processing and also to test the hypothesis that ADHD symptoms may be associated with a problem in processing of social rewards.MethodsWe recorded event-related potentials (ERPs) during a spatial attention paradigm in which cues heralded availability and type of the upcoming reward and feedbacks informed about the reward earned. Thirty-nine (19 males and 20 females) healthy individuals (age range: 19–27) participated in the study. ADHD symptoms were measured using ADHD self-report scale (ASRS).ResultsThe feedback related potentials, namely feedback related negativity (FRN), P200 and P300 amplitudes, were larger for social rewards compared to monetary rewards (Fig. 1). There was a consistent negative correlation between the hyperactivity subscale of ASRS and almost all feedback related ERPs. ERP amplitudes after social rewards were smaller for individuals with more hyperactivity.ConclusionsOur findings suggest that hypo responsiveness to social rewards may be associated with hyperactivity. However, the results have to be confirmed with clinical populations.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Alcohol ◽  
1990 ◽  
Vol 7 (5) ◽  
pp. 465-469 ◽  
Author(s):  
B. Porjesz ◽  
H. Begleiter

Sign in / Sign up

Export Citation Format

Share Document