scholarly journals 3300 Progesterone receptor alters lipid biology in luminal breast cancer

2019 ◽  
Vol 3 (s1) ◽  
pp. 19-19
Author(s):  
Ashley Vanessa Ward ◽  
Shawna B. Matthews ◽  
Carol A. Sartorius

OBJECTIVES/SPECIFIC AIMS: These studies seek to evaluate hormonal regulation of luminal breast cancer lipid metabolism and to identify targetable progesterone-mediated changes in lipid biology that contribute to therapeutic resistance in breast cancer. METHODS/STUDY POPULATION: Established and patient-derived luminal breast cancer cell lines, which express ER and PR, were used for this study. RNA transcript and protein expression levels were evaluated by qRT-PCR and immunoblot, respectively. Broad scale lipidomics of progesterone-treated cells was conducted via ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) through the UCD Skaggs School of Pharmacy Mass Spectrometry Core. RESULTS/ANTICIPATED RESULTS: Data mining of previously published microarray data of CK5+ and CK5− syngeneic cancer sublines revealed that CK5+ cells have increased expression of lipid processing genes, including LPL and PPARG. As progestin treatment induces a subpopulation of cells to turn on CK5 expression in luminal breast cancers, UHPLC-MS-based lipidomics analysis will expose whether modulation of the lipid landscape occurs in all cells with progesterone treatment, or whether this phenomenon is heightened specifically in CK5+ cells. I also expect that ER+ breast cancers with progestin induced-altered lipid content, such as lipid droplet formation, will evade therapy-induced death. DISCUSSION/SIGNIFICANCE OF IMPACT: There are numerous approved and developmental therapeutics targeting lipid biology. By determining if progestins alter lipid metabolic genes specifically in CK5+ CSCs, which are endocrine resistant, strategies may be devised to target these resistant cells using combination therapy in conjunction with existing therapies to prevent tumor recurrence.

2012 ◽  
Vol 17 (9) ◽  
pp. 1211-1220 ◽  
Author(s):  
Byong Hoon Yoo ◽  
Sunshine Daddario Axlund ◽  
Peter Kabos ◽  
Brian G. Reid ◽  
Jerome Schaack ◽  
...  

Breast cancers expressing hormone receptors for estrogen (ER) and progesterone (PR) represent ~70% of all cases and are treated with both ER-targeted and chemotherapies, with near 40% becoming resistant. We have previously described that in some ER+ tumors, the resistant cells express cytokeratin 5 (CK5), a putative marker of breast stem and progenitor cells. CK5+ cells have lost expression of ER and PR, express the tumor-initiating cell surface marker CD44, and are relatively quiescent. In addition, progestins, which increase breast cancer incidence, expand the CK5+ subpopulation in ER+PR+ breast cancer cell lines. We have developed models to induce and quantitate CK5+ER−PR− cells, using CK5 promoter-driven luciferase (Fluc) or green fluorescent protein (GFP) reporters stably transduced into T47D breast cancer cells (CK5Pro-GFP or CK5Pro-Luc). We validated the CK5Pro-GFP-T47D model for high-content screening in 96-well microplates and performed a pilot screen using a focused library of 280 compounds from the National Institutes of Health clinical collection. Four hits were obtained that significantly abrogated the progestin-induced CK5+ cell population, three of which were members of the retinoid family. Hence, this approach will be useful in discovering small molecules that could potentially be developed as combination therapies, preventing the acquisition of a drug-resistant subpopulation.


Oncotarget ◽  
2017 ◽  
Vol 8 (46) ◽  
pp. 80709-80721 ◽  
Author(s):  
Ping Chen ◽  
Yin-Huan He ◽  
Xing Huang ◽  
Si-Qi Tao ◽  
Xiao-Nan Wang ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5458
Author(s):  
Yong-Chul Kim ◽  
Mary L. Cutler

(1) Background: The microRNA (miR)-directed control of gene expression is correlated with numerous physiological processes as well as the pathological features of tumors. The focus of this study is on the role of miRs in the regulation of RSU1 and proteins in the IPP (integrin linked kinase, PINCH and parvin) complex. Because the IPP adaptor proteins link β integrins to actin cytoskeleton, and the RSU1 signaling protein connects the complex to the activation of cJun, ATF2 and the transcription of PTEN, their reduction by miRs has the potential to alter both adhesion and survival signaling. (2) Methods: Multiple database analyses were used to identify miRs that target RSU1 and PINCH1. miR transfection validated the effects of miRs on RSU1, PINCH1 and downstream targets in breast cancer cell lines. (3) Results: The miRs targeting RSU1 mRNA include miR-182-5p, -409-3p, -130a-3p, -221-3p, -744-5p and -106b-5p. Data show that miR-182-5p and -409-3p reduce RSU1, PINCH1 and inhibit the ATF2 activation of PTEN expression. miR-221-3p and miR-130a-3p target RSU1 and PINCH1 and, conversely, RSU1 depletion increases miR-221-3p and miR-130a-3p. (4) Conclusions: miRs targeting RSU1 and PINCH1 in mammary epithelial or luminal breast cancer cell lines reduced RSU1 signaling to p38 MAP kinase and ATF2, inhibiting the expression of PTEN. miR-221-3p, known to target PTEN and cell cycle regulators, also targets RSU1 and PINCH1 in luminal breast cancer cell lines.


2020 ◽  
Vol 25 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Yuxuan Han ◽  
Jun Nakayama ◽  
Yusuke Hayashi ◽  
Seongmoon Jeong ◽  
Mitsuru Futakuchi ◽  
...  

2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


Sign in / Sign up

Export Citation Format

Share Document