Managing a Mass CO Poisoning: Critical Issues and Solutions From the Field to the Hyperbaric Chamber

2016 ◽  
Vol 11 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Adriano Valerio ◽  
Matteo Verzè ◽  
Francesco Marchiori ◽  
Igor Rucci ◽  
Lucia De Santis ◽  
...  

AbstractCarbon monoxide acute intoxication is a common cause of accidental poisoning in industrialized countries and sometimes it produces a real mass casualty incident. The incident described here occurred in a church in the province of Verona, when a group of people was exposed to carbon monoxide due to a heating system malfunction. Fifty-seven people went to the Emergency Department. The mean carboxyhemoglobin (COHb) level was 10.1±5.7% (range: 3-25%). The clinicians, after medical examination, decided to move 37 patients to hyperbaric chambers for hyperbaric oxygen (HBO) therapy. This is the first case report that highlights and analyses the logistic difficulties of managing a mass carbon monoxide poisoning in different health care settings, with a high influx of patients in an Emergency Department and a complex liaison between emergency services. This article shows how it is possible to manage a complex situation with good outcome. (Disaster Med Public Health Preparedness. 2017;11:251–255)

2020 ◽  
Vol 7 (2) ◽  
pp. 120-123
Author(s):  
Jerzy Jaskuła ◽  
Marek Siuta

The aim: Incidents with large number of casualties present a major challenge for the emergency services. Incident witnesses are always the first on scene. Authors aim at giving them an algorithm arranging the widely known first aid rules in such way, that the number of potential fatalities before the services’ arrival may be decreased. Material and methods: The authors’ main aim was creating an algorithm for mass casualty incident action, comprising elements not exceeding first aid skill level. Proceedings have been systematized, which led to creation of mass casualty incident algorithm. The analysis was based on the subject matter literature, legal acts and regulations, statistical data and author’s personal experience. Results: The analysis and synthesis of data from various sources allowed for the creation of Simple Emergency Triage (SET) algorithm. It has been proven – on theoretical level – that introducing an organized way of proceeding in mass casualty incident on the first aid level is justified. Conclusions: The SET algorithm presented in the article is of an implemental character. It may be a supplement to basic first aid skills. Algorithm may also be the starting point for further empirical research aimed at verifying its effectiveness.


2019 ◽  
Vol 34 (s1) ◽  
pp. s18-s19
Author(s):  
Brad Mitchell ◽  
Karen Hammad ◽  
Dana Aldwin

Introduction:We opened a national conference in Australia with a surprise mass casualty simulation scenario of a van versus multiple persons outside the conference venue. The purpose of this exercise was to increase awareness of, and preparation for, mass casualty incident (MCI) events for the conference delegates who were paramedics, emergency department nurses, and doctors.Aim:The aim of the research is to understand whether a surprise MCI simulation is a useful way to increase knowledge and motivate preparedness.Methods:A survey hosted on Qualtrics was circulated to delegates via email. The survey was designed by the research team and had 38 questions about demographics and respondents’ experience with MCIs, as well as their perceptions of the simulation exercise. The questions were a mixture of 5-point Likert scales, multiple choice, and short answers.Results:The majority of respondents were clinicians (n = 66, 76%) and those who worked in emergency departments or the prehospital setting (n = 75, 86%). While the majority had not responded to an MCI in the past 5 years (n = 67, 77%), more than half (n = 50, 57%) had undertaken MCI training during this time. Overall, a vast majority of respondents found the simulation to be a worthwhile exercise that increased knowledge and preparedness. An overwhelming majority also reported that the simulation was relevant to practice, of high quality, and a useful way to teach about major incidents.Discussion:Our surprise major incident simulation was a fun and effective way to raise awareness and increase knowledge in prehospital and emergency department clinicians about MCI response. This approach to simulation can be easily replicated at relatively low cost and is, therefore, a useful solution to training a group of multidisciplinary health professionals outside of the workplace.


2014 ◽  
Vol 29 (5) ◽  
pp. 538-541 ◽  
Author(s):  
Benjamin W. Wachira ◽  
Ramadhani O. Abdalla ◽  
Lee A. Wallis

AbstractAt approximately 12:30 pm on Saturday September 21, 2013, armed assailants attacked the upscale Westgate shopping mall in the Westlands area of Nairobi, Kenya. Using the seven key Major Incident Medical Management and Support (MIMMS) principles, command, safety, communication, assessment, triage, treatment, and transport, the Aga Khan University Hospital, Nairobi (AKUH,N) emergency department (ED) successfully coordinated the reception and care of all the casualties brought to the hospital.This report describes the AKUH,N ED response to the first civilian mass-casualty shooting incident in Kenya, with the hope of informing the development and implementation of mass-casualty emergency preparedness plans by other EDs and hospitals in Kenya, appropriate for the local health care system.WachiraBW, AbdallaRO, WallisLA. Westgate shootings: an emergency department approach to a mass-casualty incident. Prehosp Disaster Med. 2014;29(5):1-4.


2019 ◽  
Vol 14 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Juan P. Vargas, MD, MSc ◽  
Ives Hubloue, MD, PhD ◽  
Jazmín J. Pinzón, MD ◽  
Alejandra Caycedo Duque, MD

Mass casualty incident (MCI) can occur at any time and place and health care institutions must be prepared to deal with these incidents. Emergency department staff rarely learn how to triage MCI patients during their medical or nurse degrees, or through on-the-job training. This study aims to evaluate the effect of training and experience on the MCI triage performance of emergency personnel.Methodology: This was a cross-sectional prospective study that analyzed the performance of 94 emergency department staff on the triage classifications of 50 trauma patients, before and after a short training in MCI triage, while taking into account their academic background and work experience.Results: The participants were assigned initially to one of two groups: low experience if they had less than 5 years of practice, and high experience if they had more than 5 years of practice. In the low experience group, the initial accuracy was 45.76 percent, over triage 45.84 percent, and subtriage 8.38 percent. In the high experience group, the initial accuracy was 53.80 percent, over triage 37.66 percent, and sub triage 8.57 percent.Postintervention Results: In the low experience group, the post intervention accuracy was 63.57 percent, over triage 21.15 percent, and subtriage 15.30 percentage. In the high experience group, the post-intervention accuracy was 67.66 percentage, over triage 15.19 percentage, and subtriage 17.14 percentage.  Conclusion: Upon completion of this study, it can be concluded that MCI triage training significantly improved the performance of all those involved in the workshop and that experience plays an important role in MCI triage performance.


2008 ◽  
Vol 1 (1) ◽  
pp. 46-49 ◽  
Author(s):  
Courtney E. Reinisch

Carbon monoxide (CO) is a colorless, odorless gas that can produce a constellation of noxious symptoms and potentially death when it reaches certain levels. Exposure to CO can be intentional (suicidal) or unintentional (accidental). CO poisoning is responsible for up to 40,000 to 50,000 emergency department visits and 5,000 to 6,000 deaths per year, making it one of the leading causes of poisoning death in the United States. When patients present to the emergency department with a constellation of symptoms, the advanced practice nurse should include environmental exposure in the differential diagnosis. This is especially important when family members present with similar complaints, such as headache or euphoria. Early recognition of CO poisoning is vital to identify individuals in need of prompt treatment and to prevent harmful and potential deadly exposure to others. Since patients often present with constitutional symptoms, including headache (most common), malaise, nausea, and dizziness, providers need to be cautious not to misdiagnose patients as having acute viral syndromes where CO poisoning could be the cause. Vigilance is needed during the winter months in cold climates when unintended poisoning is most common.


Sign in / Sign up

Export Citation Format

Share Document