Examination of Hospital Workers’ Emotional Responses to an Infectious Disease Outbreak: Lessons From the 2015 MERS Co-V Outbreak in South Korea

2018 ◽  
Vol 13 (03) ◽  
pp. 504-510 ◽  
Author(s):  
Heejung Son ◽  
Wang Jun Lee ◽  
Hyun Soo Kim ◽  
Kkot Sil Lee ◽  
Myoungsoon You

ABSTRACTHospital workers are critical for a successful response to an infectious disease outbreak and for preventing disease transmission to the community. Therefore, hospital crisis management should implement efforts to improve hospital workers’ preparedness in responding to public health emergencies caused by infectious diseases. Traditionally, preparedness and skill of hospital workers have been emphasized, but awareness of the importance of the emotional mindset of hospital workers in dealing with disease outbreaks has only recently increased; therefore, empirical approaches to examining emotional responses of hospital workers has been limited. This study analyzed qualitative data of the 2015 Middle East Respiratory Syndrome outbreak in South Korea. In particular, negative emotions and stress experienced by hospital workers who treated patients were characterized, as were the events that triggered such experiences. These events were categorized into four themes (eg,Mistake, Missing, Delay Due to Communication Failure). Identifying events that trigger negative emotions in hospital workers has important implications for hospitals’ management guidance in relation to an infectious disease outbreak. (Disaster Med Public Health Preparedness.2019;13:504-510)

2019 ◽  
Vol 14 (4) ◽  
pp. 255-267
Author(s):  
Paul Rega, MD, FACEP ◽  
Christopher Bork, PT, PhD, EMT-B, FASAHP ◽  
Michael Bisesi, PhD, CIH ◽  
Jeffrey P. Gold, MD ◽  
Kelly Burkholder-Allen RN, MSEd

Infectious disease outbreaks, epidemics, and subsequent pandemics are not typical disasters in the sense that they often lack clearly delineated phases. As in any event that is biological in nature, its onset may be gradual with signs and symptoms that are so subtle that they go unrecognized, thus missing opportunities to invoke an early response and implement containment strategies. An infectious disease outbreak--whether caused by a novel virus, a particularly virulent influenza strain, or newly emerging or resistant bacteria with the capability of human-to-human transmission--can quickly degrade a community’s healthcare infrastructure in advance of coordinated mitigation, preparation, and response activities. The Transitional Medical Model (TMM) was developed to aid communities with these crucial phases of disaster response as well as to assist with the initial steps within the recovery phase. The TMM is a methodology that provides a crosswalk between the routine operations and activities of a community’s public health infrastructure with action steps associated with the mitigation, preparedness, response, and recovery phases of an infectious disease outbreak.


Author(s):  
Hyoungah Kim ◽  
Dohyeong Kim ◽  
Christopher Paul ◽  
Chang Kil Lee

Background: Allocation of adequate healthcare facilities is one of the most important factors that public health policymakers consider when preparing for infectious disease outbreaks. Negative pressure isolation rooms (NPIRs) are one of the critical resources for control of infectious respiratory diseases, such as the novel coronavirus disease 2019 (COVID-19) outbreak. However, there is insufficient attention to efficient allocation of NPIR-equipped hospitals. Methods: We aim to explore any insufficiency and spatial disparity of NPIRs in South Korea in response to infectious disease outbreaks based on a simple analytic approach. We examined the history of installing NPIRs in South Korea between the severe acute respiratory syndrome (SARS) outbreak in 2003 and the Middle East respiratory syndrome coronavirus (MERS-Cov) in 2015 to evaluate the allocation process and spatial distribution of NPIRs across the country. Then, for two types of infectious diseases (a highly contagious disease like COVID-19 vs. a hospital-based transmission like MERS-Cov), we estimated the level of disparity between NPIR capacity and demand at the sub-regional level in South Korea by applying the two-step floating catchment area (2SFCA) method. Results: Geospatial information system (GIS) mapping reveals a substantial shortage and misallocation of NPIRs, indicating that the Korean government should consider a simple but evidence-based spatial method to identify the areas that need NPIRs most and allocate funds wisely. The 2SFCA method suggests that, despite the recent addition of NPIRs across the country, there should still be more NPIRs regardless of the spread pattern of the disease. It also illustrates high levels of regional disparity in allocation of those facilities in preparation for an infectious disease, due to the lack of evidence-based approach. Conclusion: These findings highlight the importance of evidence-based decision-making processes in allocating public health facilities, as misallocation of facilities could impede the responsiveness of the public health system during an epidemic. This study provides some evidence to be used to allocate the resources for NPIRs, the urgency of which is heightened in the face of rapidly evolving threats from the novel COVID-19 outbreak.


2019 ◽  
Vol 134 (2_suppl) ◽  
pp. 16S-21S ◽  
Author(s):  
Julie Villanueva ◽  
Beth Schweitzer ◽  
Marcella Odle ◽  
Tricia Aden

The Laboratory Response Network (LRN) was established in 1999 to ensure an effective laboratory response to high-priority public health threats. The LRN for biological threats (LRN-B) provides a laboratory infrastructure to respond to emerging infectious diseases. Since 2012, the LRN-B has been involved in 3 emerging infectious disease outbreak responses. We evaluated the LRN-B role in these responses and identified areas for improvement. LRN-B laboratories tested 1097 specimens during the 2014 Middle East Respiratory Syndrome Coronavirus outbreak, 180 specimens during the 2014-2015 Ebola outbreak, and 92 686 specimens during the 2016-2017 Zika virus outbreak. During the 2014-2015 Ebola outbreak, the LRN-B uncovered important gaps in biosafety and biosecurity practices. During the 2016-2017 Zika outbreak, the LRN-B identified the data entry bottleneck as a hindrance to timely reporting of results. Addressing areas for improvement may help LRN-B reference laboratories improve the response to future public health emergencies.


2018 ◽  
Author(s):  
Thomas C Matthews ◽  
Franklin R Bristow ◽  
Emma J Griffiths ◽  
Aaron Petkau ◽  
Josh Adam ◽  
...  

AbstractWhole genome sequencing (WGS) is a powerful tool for public health infectious disease investigations owing to its higher resolution, greater efficiency, and cost-effectiveness over traditional genotyping methods. Implementation of WGS in routine public health microbiology laboratories is impeded by a lack of user-friendly automated and semi-automated pipelines, restrictive jurisdictional data sharing policies, and the proliferation of non-interoperable analytical and reporting systems. To address these issues, we developed the Integrated Rapid Infectious Disease Analysis (IRIDA) platform (irida.ca), a user-friendly, decentralized, open-source bioinformatics and analytical web platform to support real-time infectious disease outbreak investigations using WGS data. Instances can be independently installed on local high-performance computing infrastructure, enabling private and secure data management and analyses according to organizational policies and governance. IRIDA’s data management capabilities enable secure upload, storage and sharing of all WGS data and metadata. The core platform currently includes pipelines for quality control, assembly, annotation, variant detection, phylogenetic analysis, in silico serotyping, multi-locus sequence typing, and genome distance calculation. Analysis pipeline results can be visualized within the platform through dynamic line lists and integrated phylogenomic clustering for research and discovery, and for enhancing decision-making support and hypothesis generation in epidemiological investigations. Communication and data exchange between instances are provided through customizable access controls. IRIDA complements centralized systems, empowering local analytics and visualizations for genomics-based microbial pathogen investigations. IRIDA is currently transforming the Canadian public health ecosystem and is freely available at https://github.com/phac-nml/irida and www.irida.ca.Impact StatementWhole genome sequencing (WGS) is revolutionizing infectious disease analysis and surveillance due to its cost effectiveness, utility, and improved analytical power. To date, no “one-size-fits-all” genomics platform has been universally adopted, owing to differences in national (and regional) health information systems, data sharing policies, computational infrastructures, lack of interoperability and prohibitive costs. The Integrated Rapid Infectious Disease Analysis (IRIDA) platform is a user-friendly, decentralized, open-source bioinformatics and analytical web platform developed to support real-time infectious disease outbreak investigations using WGS data. IRIDA empowers public health, regulatory and clinical microbiology laboratory personnel to better incorporate WGS technology into routine operations by shielding them from the computational and analytical complexities of big data genomics. IRIDA is now routinely used as part of a validated suite of tools to support outbreak investigations in Canada. While IRIDA was designed to serve the needs of the Canadian public health system, it is generally applicable to any public health and multi-jurisdictional environment. IRIDA enables localized analyses but provides mechanisms and standard outputs to enable data sharing. This approach can help overcome pervasive challenges in real-time global infectious disease surveillance, investigation and control, resulting in faster responses, and ultimately, better public health outcomes.DATA SUMMARYData used to generate some of the figures in this manuscript can be found in the NCBI BioProject PRJNA305824.


2020 ◽  
Vol 166 (1) ◽  
pp. 37-41 ◽  
Author(s):  
P Welby-Everard ◽  
O Quantick ◽  
A Green

Major disease outbreaks continue to be a significant risk to public health, with pandemic influenza or an emerging infectious disease outbreak at the top of the UK National Risk Register. The risk of deliberate release of a biological agent is lower but remains possible and may only be recognised after casualties seek medical attention. In this context the emergency preparedness, resilience and response (EPRR) process protects the public from high consequence infectious diseases, other infectious disease outbreaks and biological agent release. The core elements of the EPRR response are recognition of an outbreak, isolation of patients, appropriate personal protective equipment for medical staff and actions to minimise further disease spread. The paper discusses how high-threat agents may be recognised by clinicians, the initial actions to be taken on presentation and how the public health system is notified and responds. It draws on the national pandemic influenza plans to describe the wider response to a major disease outbreak and discusses training requirements and the potential role of the military.


2020 ◽  
Vol 29 (2) ◽  
pp. 218-222 ◽  
Author(s):  
EDUARDO A. UNDURRAGA

From a scientific standpoint, the world is more prepared than ever to respond to infectious disease outbreaks; paradoxically, globalization and air travel, antimicrobial resistance, the threat of bioterrorism, and newly emerging pathogens driven by ecological, socioeconomic, and environmental factors, have increased the risk of global epidemics.1,2,3 Following the 2002–2003 severe acute respiratory syndrome (SARS), global efforts to build global emergency response capabilities to contain infectious disease outbreaks were put in place.4,5,6 But the recent H1N1, Ebola, and Zika global epidemics have shown unnecessary delays and insufficient coordination in response efforts.7,8,9,10 In a thoughtful and compelling essay,11 Thana C. de Campos argues that greater clarity in the definition of pandemics would probably result in more timely effective emergency responses, and pandemic preparedness. In her view, a central problem is that the definition of pandemics is based solely on disease transmission across several countries, and not on spread and severity together, which conflates two very different situations: emergency and nonemergency disease outbreaks. A greater emphasis on severity, such that pandemics are defined as severe and rapidly spreading infectious disease outbreaks, would make them “true global health emergencies,” allowing for priority resource allocation and effective collective actions in emergency response efforts. Sympathetic to the position taken by de Campos, here I highlight some of the challenges in the definition of severity during an infectious disease outbreak.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ashlynn R. Daughton ◽  
Nicholas Generous ◽  
Reid Priedhorsky ◽  
Alina Deshpande

Abstract Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public health community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.


Author(s):  
Gregory Gutin ◽  
Tomohiro Hirano ◽  
Sung-Ha Hwang ◽  
Philip R. Neary ◽  
Alexis Akira Toda

AbstractHow does social distancing affect the reach of an epidemic in social networks? We present Monte Carlo simulation results of a susceptible–infected–removed with social distancing model. The key feature of the model is that individuals are limited in the number of acquaintances that they can interact with, thereby constraining disease transmission to an infectious subnetwork of the original social network. While increased social distancing typically reduces the spread of an infectious disease, the magnitude varies greatly depending on the topology of the network, indicating the need for policies that are network dependent. Our results also reveal the importance of coordinating policies at the ‘global’ level. In particular, the public health benefits from social distancing to a group (e.g. a country) may be completely undone if that group maintains connections with outside groups that are not following suit.


Sign in / Sign up

Export Citation Format

Share Document