scholarly journals The contact property for symplectic magnetic fields on

2014 ◽  
Vol 36 (3) ◽  
pp. 682-713 ◽  
Author(s):  
GABRIELE BENEDETTI

In this paper we give some positive and negative results about the contact property for the energy levels ${\rm\Sigma}_{c}$ of a symplectic magnetic field on $S^{2}$. In the first part we focus on the case of the area form on a surface of revolution. We state a sufficient condition for an energy level to be of contact type and give an example where the contact property fails. If the magnetic curvature is positive, the dynamics and the action of invariant measures can be numerically computed. The collected data hint at the conjecture that an energy level of a symplectic magnetic field with positive magnetic curvature should be of contact type. In the second part we show that, for a small energy $c$, there exist a convex hypersurface $N_{c}$ in $\mathbb{C}^{2}$ and a double cover $N_{c}\rightarrow {\rm\Sigma}_{c}$ such that the pull-back of the characteristic distribution on ${\rm\Sigma}_{c}$ is the standard characteristic distribution on $N_{c}$. As a corollary, we prove that there are either two or infinitely many periodic orbits on ${\rm\Sigma}_{c}$. The second alternative holds if there exists a contractible prime periodic orbit.

2006 ◽  
Vol 20 (32) ◽  
pp. 5417-5425
Author(s):  
HONG-YI FAN ◽  
TONG-TONG WANG ◽  
YAN-LI YANG

We show that the recently proposed invariant eigenoperator method can be successfully applied to solving energy levels of electron in an anisotropic quantum dot in the presence of a uniform magnetic field (UMF). The result reduces to the energy level of electron in isotropic harmonic oscillator potential and in UMF naturally. The Landau diamagnetism decreases due to the existence of the anisotropic harmonic potential.


2009 ◽  
Vol 87 (10) ◽  
pp. 1059-1064
Author(s):  
S. C. Joshi

By extending the study of dyonic harmonic oscillator and dyonium in the presence of an external magnetic field, the possibility of observation of dyons has been explored. The splitting in energy levels of dyonium under the influence of a weak magnetic field has been undertaken with inclusion of spin-orbit interaction, and it is observed that the energy level splits into nondegenerate as well doubly degenerate states. The effect of a strong magnetic field on dyonium has also been carried out by treating spin-orbit interaction as a perturbation, leading to interesting results.


2008 ◽  
Vol 22 (20) ◽  
pp. 1879-1892 ◽  
Author(s):  
CARLO CAFARO

In this letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


2017 ◽  
Vol 53 (6) ◽  
pp. 1104-1107 ◽  
Author(s):  
Abdolreza Jahanbekam ◽  
Colin Harthcock ◽  
David Y. Lee

A new method to directly modify the surface structure and energy levels of a porphyrin monolayer was examined with molecular-scale resolution using scanning tunneling microscopy and spectroscopy (STM and STS) and presented in this communication.


2006 ◽  
Vol 06 (02) ◽  
pp. 269-284 ◽  
Author(s):  
SUNNY K. GEORGE ◽  
K. SHANKAR

The distribution of vibrational energy in members of a complex structure with tuned absorbers attached at the joints and subjected to dynamic loading is studied. The concept of power flows through the structure is used to determine the time-averaged energy levels of each member in the structure. The power flows are calculated using the time-averaged product of force and velocity at the input and coupling points (joints) of a general structure made of axially vibrating rods. The receptance approach is used to calculate the coupling forces and velocities in the structure. By balancing the input power against the dissipated powers, the time-averaged energy levels in members are determined. The main criteria studied here is the reduction in the frequency-averaged vibrational energy level of a member when an absorber is attached, expressed as a percentage compared to the case where there are no absorbers. The concept is first illustrated with a simple model of 2 axially vibrating rods with an absorber attached to the joint. Next, a more complex structure comprising 8 rods with arbitrary orientations and several absorbers attached to junctions is studied. The effect of activating absorbers at various locations on reducing the energy levels of certain members is examined. It is possible to estimate the usefulness of the absorber with respect to any member by determining the percentage reduction of energy level for that member.


1993 ◽  
Vol 73 (5) ◽  
pp. 2364-2375 ◽  
Author(s):  
A. Ishibashi ◽  
D. G. Ravenhall ◽  
R. L. Schult ◽  
H. W. Wyld

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3455-3458
Author(s):  
ANPING LIU ◽  
YINFENG WANG ◽  
XUEHENG YANG

The Zr -doped TiN coating, a nanometer (Ti, Zr)N thin film, has been deposited by reactive magnetron sputtering on slides and Al substrates. The crystalline phase and energy band structure have been analyzed by XRD and STS. The results of XRD show that the (Ti, Zr)N film is poly crystalline and consisted of mixed crystal of TiN and ZrN phase. The STS spectra show that Zr -doping didn't change the position and band-gap of energy level, only two new energy levels appeared, Eg = 0.33eV and Eg = 0.42eV. According to the results of measurement, (Ti, Zr)N has higher hardness and better corrosion resistance than TiN by Zr -doping.


Sign in / Sign up

Export Citation Format

Share Document