scholarly journals LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE -DIMENSIONAL TORUS

2020 ◽  
Vol 8 ◽  
Author(s):  
JOACKIM BERNIER ◽  
ERWAN FAOU ◽  
BENOÎT GRÉBERT

We consider the nonlinear wave equation (NLW) on the $d$ -dimensional torus $\mathbb{T}^{d}$ with a smooth nonlinearity of order at least 2 at the origin. We prove that, for almost any mass, small and smooth solutions of high Sobolev indices are stable up to arbitrary long times with respect to the size of the initial data. To prove this result, we use a normal form transformation decomposing the dynamics into low and high frequencies with weak interactions. While the low part of the dynamics can be put under classical Birkhoff normal form, the high modes evolve according to a time-dependent linear Hamiltonian system. We then control the global dynamics by using polynomial growth estimates for high modes and the preservation of Sobolev norms for the low modes. Our general strategy applies to any semilinear Hamiltonian Partial Differential Equations (PDEs) whose linear frequencies satisfy a very general nonresonance condition. The (NLW) equation on $\mathbb{T}^{d}$ is a good example since the standard Birkhoff normal form applies only when $d=1$ while our strategy applies in any dimension.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


Author(s):  
Pietro Baldi ◽  
Emanuele Haus

Abstract Consider the Kirchhoff equation $$\begin{aligned} \partial _{tt} u - \Delta u \Big ( 1 + \int _{\mathbb {T}^d} |\nabla u|^2 \Big ) = 0 \end{aligned}$$ ∂ tt u - Δ u ( 1 + ∫ T d | ∇ u | 2 ) = 0 on the d-dimensional torus $$\mathbb {T}^d$$ T d . In a previous paper we proved that, after a first step of quasilinear normal form, the resonant cubic terms show an integrable behavior, namely they give no contribution to the energy estimates. This leads to the question whether the same structure also emerges at the next steps of normal form. In this paper, we perform the second step and give a negative answer to the previous question: the quintic resonant terms give a nonzero contribution to the energy estimates. This is not only a formal calculation, as we prove that the normal form transformation is bounded between Sobolev spaces.


2011 ◽  
Vol 32 (3) ◽  
pp. 899-918 ◽  
Author(s):  
DMITRY DOLGOPYAT ◽  
MARK FREIDLIN ◽  
LEONID KORALOV

AbstractWe study deterministic and stochastic perturbations of incompressible flows on a two-dimensional torus. Even in the case of purely deterministic perturbations, the long-time behavior of such flows can be stochastic. The stochasticity is caused by instabilities near the saddle points as well as by the ergodic component of the locally Hamiltonian system on the torus.


2021 ◽  
Vol 8 (1) ◽  
pp. 27-45
Author(s):  
M. M. Freitas ◽  
M. J. Dos Santos ◽  
A. J. A. Ramos ◽  
M. S. Vinhote ◽  
M. L. Santos

Abstract In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document