scholarly journals Measuring vacuum polarization with high-power lasers

Author(s):  
B. King ◽  
T. Heinzl

When exposed to intense electromagnetic fields, the quantum vacuum is expected to exhibit properties of a polarizable medium akin to a weakly nonlinear dielectric material. Various schemes have been proposed to measure such vacuum polarization effects using a combination of high- power lasers. Motivated by several planned experiments, we provide an overview of experimental signatures that have been suggested to confirm this prediction of quantum electrodynamics of real photon–photon scattering.

2021 ◽  
Vol 9 ◽  
Author(s):  
Fabien Quéré ◽  
Henri Vincenti

Abstract The quantum vacuum plays a central role in physics. Quantum electrodynamics (QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities >4.7×1029 W/cm2. Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of QED. Yet, the Schwinger limit is seven orders of magnitude above the present record in light intensity achieved by high-power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.


Author(s):  
Leonard Doyle ◽  
Pooyan Khademi ◽  
Peter Hilz ◽  
Alexander Sävert ◽  
Georg Schaefer ◽  
...  

Abstract High power short pulse lasers provide a promising route to study the strong field effects of the quantum vacuum, for example by direct photon-photon scattering in the all-optical regime. Theoretical predictions based on realistic laser parameters achievable today or in the near future predict scattering of a few photons with colliding Petawatt laser pulses, requiring single photon sensitive detection schemes and very good spatio-temporal filtering and background suppression. In this article, we present experimental investigations of this photon background by employing only a single high power laser pulse tightly focused in residual gas of a vacuum chamber. The focal region was imaged onto a single-photon sensitive, time gated camera. As no detectable quantum vacuum signature was expected in our case, the setup allowed for characterization and first mitigation of background contributions. For the setup employed, scattering off surfaces of imperfect optics dominated below the residual gas pressures of 1×10-4mbar. Extrapolation of the findings to intensities relevant for photon-photon scattering studies is discussed.


2012 ◽  
Vol 10 (08) ◽  
pp. 1241002 ◽  
Author(s):  
E. MILOTTI ◽  
F. DELLA VALLE ◽  
G. ZAVATTINI ◽  
G. MESSINEO ◽  
U. GASTALDI ◽  
...  

Although quantum mechanics (QM) and quantum field theory (QFT) are highly successful, the seemingly simplest state — vacuum — remains mysterious. While the LHC experiments are expected to clarify basic questions on the structure of QFT vacuum, much can still be done at lower energies as well. For instance, experiments like PVLAS try to reach extremely high sensitivities, in their attempt to observe the effects of the interaction of visible or near-visible photons with intense magnetic fields — a process which becomes possible in quantum electrodynamics (QED) thanks to the vacuum fluctuations of the electronic field, and which is akin to photon–photon scattering. PVLAS is now close to data-taking and if it reaches the required sensitivity, it could provide important information on QED vacuum. PVLAS and other similar experiments face great challenges as they try to measure an extremely minute effect. However, raising the photon energy greatly increases the photon–photon cross section, and gamma rays could help extract much more information from the observed light–light scattering. Here we discuss an experimental design to measure photon–photon scattering close to the peak of the photon–photon cross section, that could fit in the proposed construction of an FEL facility at the Cabibbo Lab near Frascati (Rome, Italy).


2010 ◽  
Vol 74 (7) ◽  
pp. 963-965 ◽  
Author(s):  
A. A. Vasil’ev ◽  
R. Kh. Gainutdinov ◽  
A. A. Mutygullina ◽  
M. Kh. Salakhov

Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 39-61 ◽  
Author(s):  
Felix Karbstein

These notes provide a pedagogical introduction to the theoretical study of vacuum polarization effects in strong electromagnetic fields as provided by state-of-the-art high-intensity lasers. Quantum vacuum fluctuations give rise to effective couplings between electromagnetic fields, thereby supplementing Maxwell’s linear theory of classical electrodynamics with nonlinearities. Resorting to a simplified laser pulse model, allowing for explicit analytical insights, we demonstrate how to efficiently analyze all-optical signatures of these effective interactions in high-intensity laser experiments. Moreover, we highlight several key features relevant for the accurate planning and quantitative theoretical analysis of quantum vacuum nonlinearities in the collision of high-intensity laser pulses.


2006 ◽  
Vol 74 (4) ◽  
Author(s):  
J. Lundin ◽  
M. Marklund ◽  
E. Lundström ◽  
G. Brodin ◽  
J. Collier ◽  
...  

2006 ◽  
Vol 96 (8) ◽  
Author(s):  
E. Lundström ◽  
G. Brodin ◽  
J. Lundin ◽  
M. Marklund ◽  
R. Bingham ◽  
...  

2009 ◽  
Vol 2009 (11) ◽  
pp. 043-043 ◽  
Author(s):  
Daniele Tommasini ◽  
Albert Ferrando ◽  
Humberto Michinel ◽  
Marcos Seco

1984 ◽  
Vol 142 (3) ◽  
pp. 395 ◽  
Author(s):  
S.I. Anisimov ◽  
A.M. Prokhorov ◽  
Vladimir E. Fortov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document