scholarly journals kW-class high power fiber laser enabled by active long tapered fiber

Author(s):  
Chen Shi ◽  
Hanwei Zhang ◽  
Xiaolin Wang ◽  
Pu Zhou ◽  
Xiaojun Xu

Compared with traditional uniform fibers, tapered fiber has numerous unique advantages, such as larger mode area, higher pump absorption, suppression to nonlinear effects, and maintaining good beam quality. In this manuscript, we have constructed an all-fiberized fiber amplifier which is based on a piece of ytterbium-doped tapered double-clad fiber (T-DCF). The fiber amplifier is operated under continuous wave (CW) regime at 1080 nm wavelength. The $M^{2}$ factor of the amplifier at 1.39 kW output power is ${\sim}1.8$. The maximum output power of the system reached 1.47 kW, which, to the best of our knowledge, is the highest output power of long tapered fiber based fiber laser system. Our result successfully verifies the potential of power scalability and all-fiberized capability of long tapered fiber, and the performance of our system can be further enhanced by fiber design optimization.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yun Ye ◽  
Xianfeng Lin ◽  
Xiaoming Xi ◽  
Chen Shi ◽  
Baolai Yang ◽  
...  

Abstract Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.


2019 ◽  
Vol 8 (3) ◽  
pp. 1022-1027
Author(s):  
Belal Ahmed Hamida ◽  
Tawfig Eltaif ◽  
Farhan Daniel Bin Mohd Noh ◽  
Sheroz Khan

This paper reported the effect of different coupling ratio in continuous wave fiber laser in a ring cavity configuration. Different coupling ratios of 10/90 and 50/50 were tested. Where the output power may vary depending on the ratio and it can be applied to specific area that requires either high or low output power. In addition, generation of passive Q-switched erbium doped fiber laser (EDFL) using graphene based saturable absorber in ring cavity using different coupling ratio was experimentally investigated. As a result, wavelength centered at 1566.62nm is obtain from EDFL cavity. Moreover, the cavity using coupler of 50/50 is capable to achieve Q-switched pulses as compared to the cavity using coupler of 10/90. Where the maximum output power recorded is 336mW with pulse repetition rate of 23.74 kHz. In addition, the pulse width is 3.84µs, and pulse energy is 14.15nJ.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Zhipeng Qin ◽  
Guoqiang Xie ◽  
Jian Zhang ◽  
Jingui Ma ◽  
Peng Yuan ◽  
...  

We report on a continuous-wave (CW) and passively Q-switched Er:Y2O3 ceramic laser in mid-infrared spectral region. In the CW regime, a maximum output power of 2.07 W is achieved at 2717.3 nm with a slope efficiency of 13.5%. Stable passive Q-switching of the Er:Y2O3 ceramic laser is demonstrated based on semiconductor saturable absorber mirror. Under an absorbed pump power of 12.4 W, a maximum average output power of 223 mW is generated with a pulse energy of 1.7 μJ and a pulse width of 350 ns at 2709.3 nm.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yingjie Shen ◽  
Chuanpeng Qian ◽  
Xiaoming Duan ◽  
Ruijun Lan

We demonstrated a high-power long-wave infrared laser based on a polarization beam coupling technique. An average output power at $8.3~\unicode[STIX]{x03BC}\text{m}$ of 7.0 W was achieved at a maximum available pump power of 107.6 W, corresponding to an optical-to-optical conversion of 6.5%. The coupling efficiency of the polarization coupling system was calculated to be approximately 97.2%. With idler single resonance operation, a good beam quality factor of ${\sim}1.8$ combined with an output wavelength of $8.3~\unicode[STIX]{x03BC}\text{m}$ was obtained at the maximum output power.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Jiadong Wu ◽  
Chunxiang Zhang ◽  
Jun Liu ◽  
Ting Zhao ◽  
Weichao Yao ◽  
...  

We report a high-power cladding-pumped Er,Yb codoped all-fiber laser with truly single transverse mode output. The fiber laser is designed to operate at 1545 nm by the use of a pair of fiber Bragg gratings (FBGs) to lock and narrow the output spectrum, which can be very useful in generating the eye-safe ~1650 nm laser emission through the Stimulated Raman Scattering (SRS) in silica fibers that is of interest in many applications. Two pieces of standard single-mode fibers are inserted into the laser cavity and output port to guarantee the truly single-mode output as well as good compatibility with other standard fiber components. We have obtained a maximum output power of 19.2 W at 1544.68 nm with a FWHM spectral width of 0.08 nm, corresponding to an average overall slope efficiency of 31.9% with respect to the launched pump power. This is, to the best of our knowledge, the highest output power reported from simple all-fiber single-mode Er,Yb codoped laser oscillator architecture.


2020 ◽  
Vol 11 (4) ◽  
pp. 264-271
Author(s):  
O. P. Dernovich ◽  
N. V. Gusakovа ◽  
V. E. Kisel ◽  
A. V. Kravtsov ◽  
S. A. Guretsky ◽  
...  

2 μm lasers are in demand for a number of practical applications, such as environmental monitoring, remote sensing, medicine, material processing, and are also used as a pump sources for optical parametric generators. Crystals of double potassium tungstates doped with ions of rare-earth elements were shown to be promising materials both for  the  creation  of  classical  solid-state  lasers  and  waveguide  lasers. The aim of this work was to develop a tunable pump laser in the spectral region of 1.9 µm based on double tungstate crystals doped with thulium ions and to study the lasing characteristics of a Ho:KY(WO4)2 crystal and a Ho:KGdYbY(WO4)2 single-crystal epitaxial layer under in-band pumping.With a Ho(1at.%):KY(WO4)2  crystal, continuous wave low-threshold lasing with an output power of 85 mW with a slope efficiency of 54 % at 2074 nm was achieved. For the first time to our knowledge, continuous wave laser  generation  in  a  waveguide  configuration  is  realized  in  a  single-crystal  layer of potassium tungstate doped with holmium ions grown by liquid-phase epitaxy. The maximum output power at a wavelength of 2055 nm was 16.5 mW.


2020 ◽  
Vol 8 ◽  
Author(s):  
Meng Wang ◽  
Yijian Huang ◽  
Zongpeng Song ◽  
Jincheng Wei ◽  
Jihong Pei ◽  
...  

We report on mode-locked thulium-doped fiber lasers with high-energy nanosecond pulses, relying on the transmission in a semiconductor saturable absorber (SESA) and a carbon nanotube (CNTs-PVA) film separately. A section of an SMF–MMF–SMF structure multimode interferometer with a transmission peak wavelength of ∼2003 nm was used as a wavelength selector to fix the laser wavelength. When the SESA acted as a saturable absorber (SA), the mode-locked fiber laser had a maximum output power of ∼461 mW with a pulse energy of ∼0.14 μJ and a pulse duration of ∼9.14 ns. In a CNT-film-based mode-locked fiber laser, stable mode-locked pulses with the maximum output power of ∼46 mW, pulse energy of ∼26.8 nJ and pulse duration of ∼9.3 ns were obtained. To the best of our knowledge, our experiments demonstrated the first 2 μm region ‘real’ SA-based dissipative soliton resonance with the highest mode-locked pulse energy from a ‘real’ SA-based all-fiberized resonator.


Author(s):  
Jie Guo ◽  
Wei Wang ◽  
Hua Lin ◽  
Xiaoyan Liang

We report on a high-repetition-rate, high-power continuously pumped Nd:GdVO4 regenerative amplifier. Numerical simulations successfully pinpoint the optimum working point free of bifurcation instability with simultaneous efficient energy extraction. At a repetition rate of 100 kHz, a maximum output power of 23 W was obtained with a pulse duration of 27 ps, corresponding to a pulse energy of $230~\unicode[STIX]{x03BC}\text{J}$ . The system displayed an outstanding stability with a root mean square power noise as low as 0.3%. The geometry of the optical resonator and the pumping scheme enhanced output power in the $\text{TEM}_{00}$ mode with a single bulk crystal. Accordingly, nearly diffraction-limited beam quality was produced with $M^{2}\approx 1.2$ at full pump power.


Sign in / Sign up

Export Citation Format

Share Document