scholarly journals Two-micron all-fiberized passively mode-locked fiber lasers with high-energy nanosecond pulse

2020 ◽  
Vol 8 ◽  
Author(s):  
Meng Wang ◽  
Yijian Huang ◽  
Zongpeng Song ◽  
Jincheng Wei ◽  
Jihong Pei ◽  
...  

We report on mode-locked thulium-doped fiber lasers with high-energy nanosecond pulses, relying on the transmission in a semiconductor saturable absorber (SESA) and a carbon nanotube (CNTs-PVA) film separately. A section of an SMF–MMF–SMF structure multimode interferometer with a transmission peak wavelength of ∼2003 nm was used as a wavelength selector to fix the laser wavelength. When the SESA acted as a saturable absorber (SA), the mode-locked fiber laser had a maximum output power of ∼461 mW with a pulse energy of ∼0.14 μJ and a pulse duration of ∼9.14 ns. In a CNT-film-based mode-locked fiber laser, stable mode-locked pulses with the maximum output power of ∼46 mW, pulse energy of ∼26.8 nJ and pulse duration of ∼9.3 ns were obtained. To the best of our knowledge, our experiments demonstrated the first 2 μm region ‘real’ SA-based dissipative soliton resonance with the highest mode-locked pulse energy from a ‘real’ SA-based all-fiberized resonator.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Ahmad ◽  
S. N. Aidit ◽  
S. I. Ooi ◽  
M. Z. Samion ◽  
S. Wang ◽  
...  

AbstractIn this work, a Figure-9 (F9) bismuth-doped fiber laser (BiDFL) operating in the dissipative soliton resonance (DSR) regime is presented. The 1338 nm laser used a BiDF as the active gain medium, while a nonlinear amplifying loop mirror (NALM) in an F9 configuration was employed to obtain high energy mode-locked pulses. The wave breaking-free rectangular pulse widened significantly in the time domain with the increase of the pump power while maintaining an almost constant peak power of 0.6 W. At the maximum pump power, the mode-locked laser delivered a rectangular-shaped pulse with a duration of 48 ns, repetition rate of 362 kHz and a radio-frequency signal-to-noise ratio of more than 60 dB. The maximum output power was recorded at around 11 mW with a corresponding pulse energy of 30 nJ. This is, to the best of the author’s knowledge, the highest mode-locked pulse energy obtained at 1.3 μm as well as the demonstration of an NALM BiDFL in a F9 configuration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qin Wei ◽  
Xile Han ◽  
Huanian Zhang ◽  
Chonghui Li ◽  
Chao Zhang ◽  
...  

The output power in ultrafast fiber lasers is usually limited due to the lack of a versatile saturable absorber with high damage threshold and large modulation depth. Here we proposed a more efficient strategy to improve the output energy of erbium-doped fiber laser based on indium selenide (In2Se3) prepared by using the physical vapor deposition (PVD) method. Finally, stable mode-locked bright pulses and triple-wavelength dark–bright pulse pair generation were obtained successfully by adjusting the polarization state. The average output power and pulse energy were 172.4 mW/101 nJ and 171.3 mW/100 nJ, which are significantly improved compared with the previous work. These data demonstrate that the PVD-In2Se3 can be a feasible nonlinear photonic material for high-power fiber lasers, which will pave a fresh avenue for the high-power fiber laser.


2020 ◽  
Vol 8 (1) ◽  
pp. 45-51
Author(s):  
R.E. Klimov ◽  
◽  
V.Yu. Lekarev ◽  
D.G. Tsarichenko ◽  
А.М. Dymov ◽  
...  

At present, minipercutaneous nephrolithotripsy is a highly effective and safe method for fragmentation of stones with sizes up to 3 cm. The use for lithotripsy of a holmium: yttrium aluminum garnet laser with wavelength 2.1 μm (Ho:YAG) is a common practice today. Of late, however, more attention is paid to a new superpulse thulium fiber laser with wavelength 1.94 μm and maximum output power 40 W. The use of a thulium laser with pulse energy 0.025–6 J and a high repetition rate (to 1600 Hz) permits to obtain (compared with a holmium laser) better results of stone dusting. Objective. Selection of the optimal modes of stone fragmentation in minipercutaneous nephrolithotripsy with the use of a superpulse thulium fiber laser with wavelength 1.94 μm and maximum output power 40 W in patients with nephrolithiasis. Patients and methods. The study included patients (n = 171), who underwent minipercutaneous nephrolithotripsy using a superpulse thulium fiber laser during the period from February 2018 to July 2019. The following parameters of laser radiation were used: pulse energy 0.1-6 J, power 6-40 W, pulse rate 30-300 Hz. The impact of modes on endoscopic visualization and retropulsion was assessed intraoperatively. Results. Statistical analysis of the specificities of the most often used modes was conducted: No 1 – «0.15 J, 200 Hz, 30 W», No 2 – «0.5 J, 30 Hz, 15 W», No 3 – «0.8 J, 31.25 Hz, 25 W», No 4 – «0.8 J, 37.5 Hz, 30 W», No 5 – «1.5 J, 15 Hz, 30 W», No 6 – «1.5 J, 26.6 Hz, 40 W», No 7 – «2 J, 15 Hz, 30 W», No 8 – «2 J, 20 Hz, 40 W», No 9 – «4 J, 10 Hz, 40 W»; their effects on retropulsion and on endoscopic visualization were studies. The stone free rate was assessed on the first post-operative day according to the findings of low-dose CT. Conclusion. Study of the modes of thulium fiber lithotripsy, assessment of retropulsion and endoscopic visualization depending on the choice of emitted radiation parameters of a thulium fiber laser make it possible to improve the outcomes of operative treatment in patients with nephrolithiasis. Key words: minipercutaneous, nephrolithotripsy, nephrolithiasis, MPNL, thulium fiber lithotripsy, retropulsion, visibility, superpulse thulium fiber laser, wavelength 1.94 μm, stone free rate


2019 ◽  
Vol 8 (3) ◽  
pp. 1022-1027
Author(s):  
Belal Ahmed Hamida ◽  
Tawfig Eltaif ◽  
Farhan Daniel Bin Mohd Noh ◽  
Sheroz Khan

This paper reported the effect of different coupling ratio in continuous wave fiber laser in a ring cavity configuration. Different coupling ratios of 10/90 and 50/50 were tested. Where the output power may vary depending on the ratio and it can be applied to specific area that requires either high or low output power. In addition, generation of passive Q-switched erbium doped fiber laser (EDFL) using graphene based saturable absorber in ring cavity using different coupling ratio was experimentally investigated. As a result, wavelength centered at 1566.62nm is obtain from EDFL cavity. Moreover, the cavity using coupler of 50/50 is capable to achieve Q-switched pulses as compared to the cavity using coupler of 10/90. Where the maximum output power recorded is 336mW with pulse repetition rate of 23.74 kHz. In addition, the pulse width is 3.84µs, and pulse energy is 14.15nJ.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Jiadong Wu ◽  
Chunxiang Zhang ◽  
Jun Liu ◽  
Ting Zhao ◽  
Weichao Yao ◽  
...  

We report a high-power cladding-pumped Er,Yb codoped all-fiber laser with truly single transverse mode output. The fiber laser is designed to operate at 1545 nm by the use of a pair of fiber Bragg gratings (FBGs) to lock and narrow the output spectrum, which can be very useful in generating the eye-safe ~1650 nm laser emission through the Stimulated Raman Scattering (SRS) in silica fibers that is of interest in many applications. Two pieces of standard single-mode fibers are inserted into the laser cavity and output port to guarantee the truly single-mode output as well as good compatibility with other standard fiber components. We have obtained a maximum output power of 19.2 W at 1544.68 nm with a FWHM spectral width of 0.08 nm, corresponding to an average overall slope efficiency of 31.9% with respect to the launched pump power. This is, to the best of our knowledge, the highest output power reported from simple all-fiber single-mode Er,Yb codoped laser oscillator architecture.


2019 ◽  
Vol 9 (2) ◽  
pp. 219
Author(s):  
Xuesheng Liu ◽  
Huan He ◽  
Yiheng Song ◽  
Congcong Wang ◽  
Zhiyong Wang

We have demonstrated a high pulse energy and high optic–optic efficiency double-pass picosecond (ps) master oscillator power amplifier system of 1064 nm at a pulse repetition rate of 500 kHz. A 500 kHz, 7.68 μJ picosecond laser is used as the seed laser. Through one stage double-pass traveling-wave amplifier, a maximum output power of 16.19 W at a pump power of 31.7 W is generated with the optic–optic efficiency of 51.07%. The output pulse duration is 17.6 ps, corresponding to the pulse energy of 32.38 μJ. The beam quality factor M 2 were measured to be 1.28 and 1.17 along the x, y axis direction, respectively.


Author(s):  
Chen Shi ◽  
Hanwei Zhang ◽  
Xiaolin Wang ◽  
Pu Zhou ◽  
Xiaojun Xu

Compared with traditional uniform fibers, tapered fiber has numerous unique advantages, such as larger mode area, higher pump absorption, suppression to nonlinear effects, and maintaining good beam quality. In this manuscript, we have constructed an all-fiberized fiber amplifier which is based on a piece of ytterbium-doped tapered double-clad fiber (T-DCF). The fiber amplifier is operated under continuous wave (CW) regime at 1080 nm wavelength. The $M^{2}$ factor of the amplifier at 1.39 kW output power is ${\sim}1.8$. The maximum output power of the system reached 1.47 kW, which, to the best of our knowledge, is the highest output power of long tapered fiber based fiber laser system. Our result successfully verifies the potential of power scalability and all-fiberized capability of long tapered fiber, and the performance of our system can be further enhanced by fiber design optimization.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850010 ◽  
Author(s):  
A. A. Latiff ◽  
X. S. Cheng ◽  
M. F. M. Rusdi ◽  
M. C. Paul ◽  
S. W. Harun ◽  
...  

We demonstrated an all-fiber mode-locked Thulium–Holmium co-doped fiber laser (THDFL) based on molybdenum disulfide (MoS2) tape saturable absorber. The THDFL generates a mode-locked pulse in anomalous regime at 1,979[Formula: see text]nm using 5[Formula: see text]m long Thulium–Holmium co-doped (THDF) as a gain medium. Through mechanical exfoliation method, the MoS2 was mechanically extracted from a commercial MoS2 crystal by using a clear scotch tape. Through balanced twin-detector measurement, the obtained MoS2 tape has a nonlinear absorption of 10% with 100[Formula: see text]MW/cm2 saturation intensity. Under 775[Formula: see text]mW to 852[Formula: see text]mW pump power, a stable pulse train was obtained at 9.12[Formula: see text]MHz repetition rate with a signal-to-noise ratio (SNR) of 45[Formula: see text]dB. The maximum output power and pulse energy were measured about 20[Formula: see text]mW and 2.2[Formula: see text]nJ, respectively. With a 3-dB spectral bandwidth of 2.1[Formula: see text]nm, the minimum possible pulse width was determined as 1.97[Formula: see text]ps.


Sign in / Sign up

Export Citation Format

Share Document