Seed Rain and Disturbance Impact Recruitment of Invasive Plants in Upland Forest

2018 ◽  
Vol 11 (2) ◽  
pp. 69-81 ◽  
Author(s):  
Lauren N. Emsweller ◽  
David L. Gorchov ◽  
Qi Zhang ◽  
Angela G. Driscoll ◽  
Michael R. Hughes

AbstractA critical question in invasion biology involves the relative importance of propagule rain and community invasibility. For plant invasions, invasibility is often related to disturbance, but few studies of forest invaders have simultaneously investigated both canopy and ground-level disturbance. We investigated the relative importance of seed rain, canopy disturbance, and soil disturbance in a mature forest in Maryland on the recruitment of four invasive species: wine raspberry (Rubus phoenicolasiusMaxim.), Japanese barberry (Berberis thunbergiiDC), multiflora rose (Rosa multifloraThunb.), and Japanese stiltgrass [Microstegium vimineum(Trin.) A. Camus]. Using complete censuses of a 9-ha plot at two points in time (2011–12 and 2014), we mapped new recruits, and related their locations to canopy and soil disturbance, as well as to a seed rain index based on locations of reproducing plants and seed-dispersal kernels.We found that propagule rain, as measured by the seed rain index, was a significant predictor of recruitment forB. thunbergii,R. phoenicolasius, andM. vimineum. ForR. multiflora, seed sources were not located, precluding assessment of propagule rain, but recruitment was linked to canopy disturbance, as was recruitment ofM. vimineum. However, because reproduction ofR. phoenicolasiusand, in some years, ofB. thunbergiiis higher in treefall gaps, these gaps experience higher propagule rain, with the result that recruitment is indirectly associated with these gaps. Ground-layer disturbance was an important predictor of recruitment only forB. thunbergii. Our findings reveal that the importance of propagule rain is the most consistent driver of recruitment, but canopy or ground-layer disturbance promotes recruitment of some invasive plant species.

2006 ◽  
Vol 6 (4) ◽  
pp. 204-211 ◽  
Author(s):  
LAURA C. JESSE ◽  
KIRK A. MOLONEY ◽  
JOHN J. OBRYCKI

2010 ◽  
Vol 3 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Andrea N. Nord ◽  
David A. Mortensen ◽  
Emily S. J. Rauschert

AbstractHabitat suitability and disturbance can shape the early stages of biological invasions in important ways. Much that we know about habitat suitability and invasion originates from point-in-time studies, which characterize invasive plant abundance and associated site characteristics. In our study, we tested the influence of habitat suitability by creating small-scale invasions in a range of environments. Seeds of the invasive annual grass Japanese stiltgrass [Microstegium vimineum (Trin.) A. Camus] were planted into six environments in a deciduous forest in central Pennsylvania, and patch growth was monitored for 4 yr. Each of the 30 sites included a subplot subjected to litter disturbance at time of planting. This litter disturbance led to increased seedling recruitment only in the first 2 yr. Although patches were generally larger in wetland and roadside habitats, site influence was highly variable. Environmental variables (soil moisture, ammonium–N, pH, and plant species richness) measured in each plot were better predictors of population success than broad habitat categories. We conclude that risk assessment for species such as M. vimineum should focus not on habitat types but on areas likely to experience the physical changes that release M. vimineum populations.


2020 ◽  
Vol 13 (1) ◽  
pp. 23-29
Author(s):  
Cody Kepner ◽  
Vanessa B. Beauchamp

AbstractUnderstanding the mechanisms by which an invasive plant species is able to colonize and successfully expand into native plant communities can help in estimating the potential threat posed by a new invader and predict impacts on community diversity, structure, and function. Wavyleaf basketgrass [Oplismenus undulatifolius (Ard.) P. Beauv.] is a perennial, shade-tolerant grass species that has been recently introduced to the mid-Atlantic United States. Areas invaded by O. undulatifolius typically have low species richness, but it is unknown whether O. undulatifoius actively outcompetes other species or simply thrives primarily in species-poor habitats. This study used a greenhouse experiment to quantify interspecific competition in shade and sun among seedlings of O. undulatifolius; Japanese stiltgrass [Microstegium vimineum (Trin.) A. Camus], an invasive annual grass common in the region; and a mix of three native perennial grass species commonly used in restoring areas invaded by M. vimineum. In this experiment, shade did not significantly affect growth or competitive ability. Interspecific competition irrespective of shade had a negative effect on growth of all species, but O. undulatifolius was affected to a much greater degree than either M. vimineum or the native grass mix. These results suggest that, at least under these conditions, O. undulatifolius is a weak interspecific competitor and may be capable of forming dense monotypic stands only in areas that already have low species diversity. In the mid-Atlantic region, postagricultural legacies and overabundant deer populations, which lead to depauperate understories, may be a major facilitator of O. undulatifolius invasion in forests.


2006 ◽  
Vol 6 (4) ◽  
pp. 235-240 ◽  
Author(s):  
LAURA C. JESSE ◽  
KIRK A. MOLONEY ◽  
JOHN J. OBRYCKI

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 762-767 ◽  
Author(s):  
Jonathan M. Lehrer ◽  
Mark H. Brand ◽  
Jessica D. Lubell

While japanese barberry (Berberis thunbergii DC.) is an acknowledged invasive plant naturalized throughout the eastern and northern U.S., the danger posed by its popular horticultural forms is unknown and controversial. This work analyzed the reproductive potential and seedling growth of four ornamental genotypes important to the nursery industry. Fruit and seed production was quantified in 2001, 2002, and 2003 for multiple landscape plants of B.t. var. atropurpurea, `Aurea', `Crimson Pygmy', and `Rose Glow'. The average number of seeds produced per landscape specimen ranged from lows of 75 and 90 for `Aurea' and `Crimson Pygmy' to 2968 for var. atropurpurea and 762 for `Rose Glow'. Seed production relative to canopy surface area for `Rose Glow' was similar to `Aurea' and `Crimson Pygmy' and all three cultivars were less prolific than var. atropurpurea in this regard. Cleaned and stratified seeds from var. atropurpurea, `Crimson Pygmy' and `Rose Glow' showed an average greenhouse germination rate of 70% to 75%, while `Aurea' yielded 46% germination. A subpopulation of seedlings from each genotype accession was grown further outdoors in containers for a full season to ascertain seedling vigor and development. The vigor of 1-year-old seedlings, as measured by dry weight of canopy growth, for progeny derived from `Aurea' (0.70 g) and `Crimson Pygmy' (0.93 g) was significantly less than var. atropurpurea (1.20 g) and `Rose Glow' (1.33 g). These results demonstrate that popular japanese barberry cultivars express disparate reproductive potential that, after further study, may be correlated with invasive potential. Some popular commercial cultivars may pose significantly less ecological risk than others.


2012 ◽  
Vol 5 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Jeffrey Stuart Ward ◽  
Todd L. Mervosh

AbstractJapanese stiltgrass, an annual grass species native to eastern Asia, has become a serious invasive-plant problem in the eastern United States. We compared the efficacy of herbicides and nonchemical options found effective for controlling stiltgrass in earlier studies, with organic herbicides and herbicides used at reduced rates in a wooded floodplain along the lower Connecticut River. We compared the effect of 2 yr of conventional and alternative treatments on cover of other nonnative and native species. Four blocks of 18 plots (3 by 4 m [9.8 by 13.1 ft]) were established in May 2008. Treatments included directed heating with a propane torch (June, July), hand-pulling (July), mowing with a string trimmer (July, August), foliar applications of household vinegar [5% acetic acid] (June, July) and the herbicides imazapic (June), pelargonic acid (June, July), and pelargonic acid plus pendimethalin (June). The following herbicides were applied at labeled doses and at one-fourth labeled doses: fenoxaprop-p-ethyl (July), glufosinate (August), and glyphosate (August). Stiltgrass cover and height were evaluated periodically, and plant samples were collected in autumn of 2008 and 2009 to determine the number of viable seeds produced. Final evaluations were conducted in June 2010 after 2 yr of treatment. Stiltgrass cover averaged 88% on untreated plots in fall. All treatments reduced stiltgrass cover and seed production. The least-effective treatments were hand-pulling, pelargonic acid, and vinegar in July. Direct heating, mowing, and vinegar in June reduced seed production by more than 90%. All treatments containing imazapic, pelargonic acid plus pendimethalin, fenoxaprop-p-ethyl, glufosinate, and glyphosate completely prevented stiltgrass seed production in the second year of treatment. Effective control of stiltgrass can be achieved during a 2-yr period with a variety of herbicides, including herbicides at one-fourth of the labeled dose, and through nonchemical treatments.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrew P. Landsman ◽  
John Paul Schmit ◽  
Elizabeth R. Matthews

Exotic plant species often negatively affect native herbivores due to the lack of palatability of the invading plant. Although often unsuitable as food, certain invasive species may provide non-nutritional ecological benefits through increased habitat structural complexity. To understand the potential for common invasive forest plant species of the eastern United States to benefit invertebrate communities, we examined the functional and taxonomic community composition of forest insects and spiders in long-term monitoring plots that contained invasive plant species. The extent of invasive plant species ground cover significantly altered spider community composition as categorized by hunting guild. Areas with higher invasive herbaceous and grass cover contained a higher abundance of space web-weaving and hunting spiders, respectively. Spider species richness and total invertebrate abundance also increased with greater invasive grass cover. Still, these trends were driven by just two invasive plant species, garlic mustard and Japanese stiltgrass, both of which have previously been shown to provide structural benefits to native invertebrate taxa. While these two species may improve the structural component of understory forest habitat, many invertebrate groups were not significantly correlated with other prevalent invasive plants and one species, mock strawberry, negatively affected the abundance of certain insect taxa. Particularly in forests with reduced native plant structure, invasive plant management must be conducted with consideration for holistic habitat quality, including both plant palatability and structure.


2017 ◽  
Vol 114 (16) ◽  
pp. E3276-E3284 ◽  
Author(s):  
Cory Merow ◽  
Sarah Treanor Bois ◽  
Jenica M. Allen ◽  
Yingying Xie ◽  
John A. Silander

Forecasting ecological responses to climate change, invasion, and their interaction must rely on understanding underlying mechanisms. However, such forecasts require extrapolation into new locations and environments. We linked demography and environment using experimental biogeography to forecast invasive and native species’ potential ranges under present and future climate in New England, United States to overcome issues of extrapolation in novel environments. We studied two potentially nonequilibrium invasive plants’ distributions, Alliaria petiolata (garlic mustard) and Berberis thunbergii (Japanese barberry), each paired with their native ecological analogs to better understand demographic drivers of invasions. Our models predict that climate change will considerably reduce establishment of a currently prolific invader (A. petiolata) throughout New England driven by poor demographic performance in warmer climates. In contrast, invasion of B. thunbergii will be facilitated because of higher growth and germination in warmer climates, with higher likelihood to establish farther north and in closed canopy habitats in the south. Invasion success is in high fecundity for both invasive species and demographic compensation for A. petiolata relative to native analogs. For A. petiolata, simulations suggest that eradication efforts would require unrealistic efficiency; hence, management should focus on inhibiting spread into colder, currently unoccupied areas, understanding source–sink dynamics, and understanding community dynamics should A. petiolata (which is allelopathic) decline. Our results—based on considerable differences with correlative occurrence models typically used for such biogeographic forecasts—suggest the urgency of incorporating mechanism into range forecasting and invasion management to understand how climate change may alter current invasion patterns.


2017 ◽  
Vol 10 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Daniel R. Tekiela ◽  
Jacob N. Barney

Ecological impacts from invasive plants that have been identified include reductions in biodiversity, changes in resource cycling, and disruptions of ecosystem function. To mitigate these negative ecological impacts, managers work to remove invasive plants. However, removal does not necessarily immediately lead to a return to the uninvaded ecological state. Similarly, the accumulation rate of ecological impacts following invader establishment is almost entirely unknown for most species, hindering identification of optimal management times. The accumulation and loss (so-called legacy effects) of impacts following invader establishment and removal represent an “invasion shadow.” To begin to understand invasion shadows, we measured the changes in biotic and abiotic ecological impacts during establishment and following removal of the forest understory invader Japanese stiltgrass. We found that when the abiotic metrics were considered, seeded areas became more functionally similar to the invaded landscape and removed areas became more similar to the uninvaded landscape. However, while the plant community did not change in a 3-yr period during a new invasion, following invader removal, it became less similar to both the invaded and uninvaded landscape altogether, suggesting legacies. Surprisingly, all changes occurred almost immediately and persisted following invader establishment and removal. Our results show, at least in a 3-yr period, that ecosystems can respond to changes in invader abundance, and in some cases simply removing the invader could result in long-term changes to the resident plant community.


Sign in / Sign up

Export Citation Format

Share Document