scholarly journals Pennisetum ciliare: a review of treatment efficacy, competitive traits, and restoration opportunities

2019 ◽  
Vol 12 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Hannah L. Farrell ◽  
Elise S. Gornish

AbstractBuffelgrass [Pennisetum ciliare (L.) Link] is a drought-tolerant invasive grass that is a threat to native biodiversity in the drylands of the Americas and Australia. Despite efforts from land managers to control P. ciliare, management approaches tend to have mixed success, treatment results can be poorly communicated among entities, and there are few long-term controlled studies. In this literature review, we synthesize data from both peer-reviewed and “gray” literature on the efficacy of management techniques to control P. ciliare and the secondary impacts to native plant communities. Our search resulted in 42 unique sources containing a total of 229 studies that we categorized into 10 treatment types, which included herbicide, seeding, manual removal, fire, grazing, biocontrol, fire + additional treatments, manual removal + additional treatments, herbicide + additional treatments, and herbicide + manual removal. We found that treatments that used multiple techniques in tandem along with follow-up treatments were the most effective at controlling P. ciliare. Fewer than one-third of the studies reported impacts of management on native species, and the most commonly studied treatment (herbicide, N = 130) showed detrimental impacts on native plant communities. However, the average time between treatment and outcome measurement was only 15 mo; we suggest the need for more long-term studies of treatment efficacy and secondary impacts of treatment on the ecosystem. Finally, we conducted a second literature review on P. ciliare biology and traits for mechanisms that allows P. ciliare to alter the invaded environment to facilitate a competitive advantage over native species. We found evidence of self-reinforcing feedbacks of invasion being generated by P. ciliare through its interactions with water availability, nutrient cycling, and disturbance regimes. We developed a conceptual model of P. ciliare based on these feedback loops and offer management considerations based on its invasion dynamics and biology.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


Author(s):  
Elizabeth M. Wandrag ◽  
◽  
Jane A. Catford ◽  
◽  
◽  
...  

The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


2010 ◽  
Vol 3 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Travis L. Almquist ◽  
Rodney G. Lym

AbstractAminopyralid efficacy on Canada thistle (Cirsium arvense) and potential to injure native species was evaluated in a restored prairie at the Glacial Ridge Preserve managed by The Nature Conservancy in Polk County, MN. Canada thistle stem density was reduced from 17 to 0.1 stems m−2 10 mo after treatment (MAT) with aminopyralid applied in the fall at 120 g ha−1. Aminopyralid also altered the composition of both Canada thistle–infested and native plant communities. Aminopyralid controlled Canada thistle and removed or reduced several undesirable forb species from the restored prairie communities, such as absinth wormwood (Artemisia absinthium) and perennial sowthistle (Sonchus arvensis). A number of high seral forbs were also reduced or removed by aminopyralid, including maximilian sunflower (Helianthus maximiliani) and purple prairie clover (Dalea purpurea). Foliar cover of high seral forbs in the native plant community was reduced from 12.2 to 7% 22 MAT. The cover of high seral grass species, such as big bluestem (Andropogon gerardii) and Indiangrass (Sorghastrum nutans) increased after aminopyralid application in both the Canada thistle–infested and native plant communities and averaged 41.4% cover compared with only 19.4% before removal of Canada thistle. Species richness, evenness, and diversity were reduced after aminopyralid application in both Canada thistle–infested and native plant communities. However, the benefits of Canada thistle control, removal of undesirable species, and the increase in native grass cover should lead to an overall improvement in the long-term stability and composition of the restored prairie plant community, which likely outweigh the short-term effects of a Canada thistle control program.


2012 ◽  
Vol 18 (2) ◽  
pp. 123 ◽  
Author(s):  
E Reddy ◽  
D H Van Vuren ◽  
P G Scowcroft ◽  
J B Kauffman ◽  
L Perry

Seven exclosure sites located on Mauna Kea, Hawaii and established in the 1960s and 70s were sampled to characterize long-term response of the mamane (Sophora chrysophylla) forest to protection from feral sheep grazing, and to assess impacts of non-native plant species and recurrent sheep presence on forest recovery. The forest provides essential habitat for an endangered bird, the palila (Loxoides bailleui). Vegetation was sampled inside exclosures during 1972–1976, 1998, and 2009, and also outside exclosures during 2009. Patterns of response varied among exclosures, but overall, mamane trees and native shrubs showed increasing cover between the 1970s and 1998, then a slowed rate of increase in cover or a decline between 1998 and 2009. Cover of native herbaceous vegetation showed variable trends between the 1970s and 1998, and then appeared to decline between 1998 and 2009. Mamane height class distributions inside exclosures indicated that recruitment was initially high but then declined as heights shifted toward larger size classes, and presumably an older age distribution. We found limited evidence of a negative effect of non-native species on forest regrowth, but the effect was not consistent over time or among sites. Recurrent sheep presence outside exclosures negatively affected mamane canopy density and perhaps tree density at all sites, and mamane condition at some sites. Our results indicate that the mamane forest has shown substantial regrowth inside exclosures at some sites, especially those protected the longest. However, these exclosures represent a small portion of the mamane forest. Sheep presence continues to impact mamane recovery outside exclosures, and thus habitat quality for the palila.


2021 ◽  
Author(s):  
Liliana Benitez ◽  
Amy E. Kendig ◽  
Ashish Adhikari ◽  
Keith Clay ◽  
Philip F. Harmon ◽  
...  

AbstractPlant litter can alter ecosystems and promote plant invasions by changing resource acquisition, depositing toxins, and transmitting microorganisms to living plants. Transmission of microorganisms from invasive litter to live plants may gain importance as invasive plants accumulate pathogens over time since introduction. It is unclear, however, if invasive plant litter affects native plant communities by promoting disease. Microstegium vimineum is an invasive grass that suppresses native populations, in part through litter production, and has accumulated leaf spot diseases since its introduction to the U.S. In a greenhouse experiment, we evaluated how M. vimineum litter and accumulated pathogens mediated resource competition with the native grass Elymus virginicus. Resource competition reduced biomass of both species and live M. vimineum increased disease incidence on the native species. Microstegium vimineum litter also promoted disease on the native species, suppressed establishment of both species, and reduced biomass of M. vimineum. Nonetheless, interference competition from litter had a stronger negative effect on the native species, increasing the relative abundance of M. vimineum. Altogether, invasive grass litter suppressed both species, ultimately favoring the invasive species in competition, and increased disease incidence on the native species.


2010 ◽  
Vol 58 (7) ◽  
pp. 546 ◽  
Author(s):  
Paula Lorenzo ◽  
Eva Pazos-Malvido ◽  
Manuel J. Reigosa ◽  
Luís González

Invasion by exotic species constitutes a major threat to natural ecosystems. One of the most invasive species of current concern in Europe is Acacia dealbata Link (Mimosaceae), the expansion of which is reducing populations of native species, and hence biodiversity. To investigate the potential involvement of allelopathic mechanisms in this process, we evaluated the germination and seedling growth performance of Lactuca sativa L. (Compositae), Zea mays L. (Gramineae), Dactylis glomerata L. (Gramineae), Arabidopsis thaliana (L.) Heynh. (Cruciferae) and A. dealbata, in the presence of mixtures of throughfall and litter leachate and of aqueous soil extracts collected under A. dealbata at different times of the year. Each test species responded differently to the solutions being assayed suggesting that A. dealbata allelochemicals may affect a variety of physiological growth parameters. In most cases the observed effects were stimulatory rather than inhibitory, which may have long-term deleterious effects on native plant populations since premature growth during periods of poor resources can be detrimental. Interestingly, increased radical growth of A. dealbata was detected with either extract suggesting a positive autoalleloapthy effect.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carlos García ◽  
Josefina G. Campoy ◽  
Rubén Retuerto

Abstract Background Although the immediate consequences of biological invasions on ecosystems and conservation have been widely studied, the long-term effects remain unclear. Invaders can either cause the extinction of native species or become integrated in the new ecosystems, thus increasing the diversity of these ecosystems and the services that they provide. The final balance of invasions will depend on how the invaders and native plants co-evolve. For a better understanding of such co-evolution, case studies that consider the changes that occur in both invasive and native species long after the introduction of the invader are especially valuable. In this work, we studied the ecological consequences of the more than one century old invasion of NW Iberia by the African plant Carpobrotus edulis. We conducted a common garden experiment to compare the reciprocal effects of competition between Carpobrotus plants from the invaded area or from the native African range and two native Iberian plant species (Artemisia crithmifolia and Helichrysum picardii) from populations exposed or unexposed to the invader. Results Exposure of H. picardii populations to C. edulis increased their capacity to repress the growth of Carpobrotus. The repression specifically affected the Carpobrotus from the invader populations, not those from the African native area. No effects of exposition were detected in the case of A. crithmifolia. C. edulis plants from the invader populations had higher growth than plants from the species' African area of origin. Conclusions We found that adaptive responses of natives to invaders can occur in the long term, but we only found evidence for adaptive responses in one of the two species studied. This might be explained by known differences between the two species in the structure of genetic variance and gene flow between subpopulations. The overall changes observed in the invader Carpobrotus are consistent with adaptation after invasion.


2018 ◽  
Vol 40 (6) ◽  
pp. 577 ◽  
Author(s):  
Elise S. Gornish ◽  
D. J. Eastburn ◽  
Scott Oneto ◽  
Leslie M. Roche

Ranchers are increasingly expected to manage grasslands for forage production and native biodiversity enhancement goals. However, longstanding relationships between grazing and plant species are often understudied because elucidating effects of grazing absence and presence often requires experimental opportunities that are difficult to establish, such as the introduction of grazing to long-term ungrazed pastures. Addressing this knowledge gap is critical for heterogeneous landscapes where site-specific properties might interact with grazing effects to ultimately structure plant communities. We conducted vegetation surveys for 3 years after grazing was reintroduced to an annual California grassland that was not grazed for more than 60 years. We investigated how grazing affected plant communities in terms of cover and richness of native and invasive species and how topographic sites of summit, backslope and toeslope altered these relationships. The plant communities were affected by the independent effects of grazing, site and year. Across years, native cover was 39% greater in grazed plots compared with ungrazed plots. Native species richness was slightly lower in ungrazed compared with grazed plots for toeslope sites relative to the other topographic positions. Invasive species cover was 17% lower in grazed plots compared with ungrazed plots and no predictors were found to contribute to significant differences across plots. Although we generally did not find expected relationships between site and plant response to grazing, this work demonstrates how managers can use livestock to quickly modify plant communities in areas with a long history of grazing absence.


Sign in / Sign up

Export Citation Format

Share Document