scholarly journals Can Imazapic Increase Native Species Abundance in Cheatgrass (Bromus tectorum) Invaded Native Plant Communities?

2011 ◽  
Vol 64 (6) ◽  
pp. 641-648 ◽  
Author(s):  
Adrien C. Elseroad ◽  
Nathan T. Rudd
Author(s):  
Elizabeth M. Wandrag ◽  
◽  
Jane A. Catford ◽  
◽  
◽  
...  

The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


2010 ◽  
Vol 3 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Travis L. Almquist ◽  
Rodney G. Lym

AbstractAminopyralid efficacy on Canada thistle (Cirsium arvense) and potential to injure native species was evaluated in a restored prairie at the Glacial Ridge Preserve managed by The Nature Conservancy in Polk County, MN. Canada thistle stem density was reduced from 17 to 0.1 stems m−2 10 mo after treatment (MAT) with aminopyralid applied in the fall at 120 g ha−1. Aminopyralid also altered the composition of both Canada thistle–infested and native plant communities. Aminopyralid controlled Canada thistle and removed or reduced several undesirable forb species from the restored prairie communities, such as absinth wormwood (Artemisia absinthium) and perennial sowthistle (Sonchus arvensis). A number of high seral forbs were also reduced or removed by aminopyralid, including maximilian sunflower (Helianthus maximiliani) and purple prairie clover (Dalea purpurea). Foliar cover of high seral forbs in the native plant community was reduced from 12.2 to 7% 22 MAT. The cover of high seral grass species, such as big bluestem (Andropogon gerardii) and Indiangrass (Sorghastrum nutans) increased after aminopyralid application in both the Canada thistle–infested and native plant communities and averaged 41.4% cover compared with only 19.4% before removal of Canada thistle. Species richness, evenness, and diversity were reduced after aminopyralid application in both Canada thistle–infested and native plant communities. However, the benefits of Canada thistle control, removal of undesirable species, and the increase in native grass cover should lead to an overall improvement in the long-term stability and composition of the restored prairie plant community, which likely outweigh the short-term effects of a Canada thistle control program.


2018 ◽  
Vol 11 (4) ◽  
pp. 175-180 ◽  
Author(s):  
Christopher L. Zimmerman ◽  
Rebecca R. Shirer ◽  
Jeffrey D. Corbin

AbstractProjects that aim to control invasive species often assume that a reduction of the target species will increase native species abundance. However, reports of the responses of native species following exotic species control are relatively rare. We assessed the recovery of the native community in five tidal wetland locations in which we attempted to eradicate the invasive common reed [Phragmites australis (Cav.) Trin. ex Steud.]. We tested whether 3 yr of treatment were able to eradicate Phragmites and promote recovery of the native plant community. After 3 yr of treatment, Phragmites density declined sharply in all treated stands, though it was not eradicated in any of them. Native plant cover increased significantly in treated areas, and community composition, particularly in smaller stands, converged toward that of uninvaded habitat. Thus, even within the relatively short timescale of the treatments and monitoring, significant progress was made toward achieving the goals of controlling Phragmites infestations and promoting native biodiversity. There was a trend toward greater promise for success in smaller stands than larger stands, as has been observed in other studies. A greater emphasis on monitoring whole-community responses to exotic plant control, across a range of conditions, would enhance our ability to plan and design successful management strategies.


1995 ◽  
Vol 43 (4) ◽  
pp. 349 ◽  
Author(s):  
SM Prober ◽  
KR Thiele

Before European settlement, grassy white box woodlands were the dominant vegetation in the east of the wheat-sheep belt of south-eastern Australia. Tree clearing, cultivation and pasture improvement have led to fragmentation of this once relatively continuous ecosystem, leaving a series of remnants which themselves have been modified by livestock grazing. Little-modified remnants are extremely rare. We examined and compared the effects of fragmentation and disturbance on the understorey flora of woodland remnants, through a survey of remnants of varying size, grazing history and tree clearing. In accordance with fragmentation theory, species richness generally increased with remnant size, and, for little-grazed remnants, smaller remnants were more vulnerable to weed invasion. Similarly, tree clearing and grazing encouraged weed invasion and reduced native species richness. Evidence for increased total species richness at intermediate grazing levels, as predicted by the intermediate disturbance hypothesis, was equivocal. Remnant quality was more severely affected by grazing than by remnant size. All little-grazed remnants had lower exotic species abundance and similar or higher native species richness than grazed remnants, despite their extremely small sizes (< 6 ha). Further, small, littlegrazed remnants maintained the general character of the pre-European woodland understorey, while grazing caused changes to the dominant species. Although generally small, the little-grazed remnants are the best representatives of the pre-European woodland understorey, and should be central to any conservation plan for the woodlands. Selected larger remnants are needed to complement these, however, to increase the total area of woodland conserved, and, because most little-grazed remnants are cleared, to represent the ecosystem in its original structural form. For the maintenance of native plant diversity and composition in little-grazed remnants, it is critical that livestock grazing continues to be excluded. For grazed remnants, maintenance of a site in its current state would allow continuation of past management, while restoration to a pre-European condition would require management directed towards weed removal, and could take advantage of the difference noted in the predominant life-cycle of native (perennial) versus exotic (annual or biennial) species.


2021 ◽  
Author(s):  
Robert Slesak ◽  
Timothy Harrington ◽  
Anthony D'Amato ◽  
David Peter

Abstract Scotch broom is an aggressive invasive species of major concern in coast Douglas-fir forests of the Pacific Northwest USA. Control efforts are common, but potential for ecosystem recovery following Scotch broom removal is unclear. We assessed the potential for ecosystem recovery following broom removal at two sites that contrasted strongly in soil quality (i.e., texture and nutrient pool size) in western Washington and Oregon. Comparisons were made among replicated plots where Scotch broom was never present (uninvaded), retained, or removed. Microclimate (photosynthetically active radiation (PAR), soil temperature and moisture), soil properties, and vegetation were monitored during 2013 to 2017. Scotch broom removal increased PAR and soil temperature at both sites but had limited effects on soil moisture. Concentrations of Ca, Mg, K, and P were significantly lower with Scotch broom removal compared to the uninvaded and retained treatments, with the effect being most pronounced at the low-quality site. NMS ordinations indicated that the treatments differed in vegetation composition, with limited evidence for recovery in the removal treatment. Nonnative and native species varied inversely in their abundance responses, where nonnative species abundance was greatest in the removal treatment, intermediate in the retained treatment, and lowest in the uninvaded treatment, indicating occurrence of a secondary invasion following removal. As with the soil response, effects were more pronounced at the low-quality site. Our findings indicate that Scotch broom removal exacerbates negative effects on soil and plant communities, with little evidence of ecosystem recovery over our study period. These findings highlight the importance of controlling Scotch broom invasions immediately after the species establishes, especially at low-quality sites that are more susceptible to Scotch broom invasion and negative legacy effects.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2507
Author(s):  
Vilma Gudyniene ◽  
Sigitas Juzenas ◽  
Vaclovas Stukonis ◽  
Egle Norkeviciene

Hydroseeding is a convenient, low-cost way to plant seeds. Traditionally, fast-growing commercial species that are cheap to obtain are preferred in hydroseeding, while native species have limited use. Nowadays, the use of native species is often desired in revegetation projects. However, there is a paucity of information about hydroseeding native species in Northern areas of Europe. Therefore, we aimed to determine whether hydroseeding has any effects on native plant cover formation, species richness and abundance, the development of plant morphological features, or aboveground biomass. A total of 40 native plant species in Lithuania were sowed using hydroseeding and regular seeding. The experimental plots were assessed for two years. The results show a relatively small and short positive effect of hydroseeding on plant cover formation. No significant differences were found in species richness between the sowing treatments. However, a comparison of species composition revealed significant differences between the sowing treatments that were more associated with species abundance than species diversity. Hydroseeding was favoured by legume species, such as Onobrychis viciifolia, Ononis arvensis, Lotus corniculatus, and Trifolium medium, while Festuca rubra favoured the regular seeding treatment. Overall, our findings emphasize that legume species that display more competitive growth traits should be included in the seed mixture in lower proportions when hydroseeding is applied.


2019 ◽  
Vol 12 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Hannah L. Farrell ◽  
Elise S. Gornish

AbstractBuffelgrass [Pennisetum ciliare (L.) Link] is a drought-tolerant invasive grass that is a threat to native biodiversity in the drylands of the Americas and Australia. Despite efforts from land managers to control P. ciliare, management approaches tend to have mixed success, treatment results can be poorly communicated among entities, and there are few long-term controlled studies. In this literature review, we synthesize data from both peer-reviewed and “gray” literature on the efficacy of management techniques to control P. ciliare and the secondary impacts to native plant communities. Our search resulted in 42 unique sources containing a total of 229 studies that we categorized into 10 treatment types, which included herbicide, seeding, manual removal, fire, grazing, biocontrol, fire + additional treatments, manual removal + additional treatments, herbicide + additional treatments, and herbicide + manual removal. We found that treatments that used multiple techniques in tandem along with follow-up treatments were the most effective at controlling P. ciliare. Fewer than one-third of the studies reported impacts of management on native species, and the most commonly studied treatment (herbicide, N = 130) showed detrimental impacts on native plant communities. However, the average time between treatment and outcome measurement was only 15 mo; we suggest the need for more long-term studies of treatment efficacy and secondary impacts of treatment on the ecosystem. Finally, we conducted a second literature review on P. ciliare biology and traits for mechanisms that allows P. ciliare to alter the invaded environment to facilitate a competitive advantage over native species. We found evidence of self-reinforcing feedbacks of invasion being generated by P. ciliare through its interactions with water availability, nutrient cycling, and disturbance regimes. We developed a conceptual model of P. ciliare based on these feedback loops and offer management considerations based on its invasion dynamics and biology.


2019 ◽  
Author(s):  
Joseph E Braasch ◽  
Maria A Johnson ◽  
Susan P Harrison ◽  
Katrina M Dlugosch

AbstractIntroduced species are a common feature of modern plant communities and experience environmental challenges alongside native species. Changes to the environment may reveal distinct species-environment relationships for native and introduced components of plant communities. Extreme environmental change, such as drought, is predicted to result in declines in native species and increased opportunities for invasion, but empirical support for these ideas remains mixed. We tested for differences in the response of native and invaded species to environmental changes by analyzing a longterm dataset of species abundance in California grasslands collected during a period of severe drought. Sampling sites included a combination of stressful serpentine soils, which are resilient against invasion and maintain diverse native species assemblages, and more benign nonserpentine soils, which are heavily invaded and harbor low levels of native species cover. We found a significant correlation between sampling year and species composition for nonserpentine sites, but not for serpentine sites. These patterns were repeated when only introduced species were included in the analysis but no pattern of change was found for native species. The species most strongly associated with directional change on nonserpentine soils were three invasive Eurasian grasses, Bromus hordaceus, Taeniatherium caput-medusae, and Avena fatua. Differences in species composition on both serpentine and nonserpentine soils were significantly correlated with specific leaf area, a trait which has been linked to drought tolerance in these communities, although changes in abundance for the three Eurasian grasses most strongly associated with change did not consistently follow this pattern. Our analyses indicate relatively stable native community composition and strong directional change in introduced species composition, contradicting predictions for how native and introduced species will respond to environmental shifts, but supporting the hypothesis that native and invading species groups have important functional differences that shape their relationships to the environment.


Author(s):  
Dorothy Borowy ◽  
Chris Swan

Despite a growing literature-base devoted to documenting biodiversity patterns in cities, little is known about the processes that influence these patterns, and whether they are consistent over time. In particular, numerous studies have identified the capacity of cities to host a rich diversity of plant species. This trend, however, is driven primarily by introduced species, which comprise a large proportion of the urban species pool relative to natives. Using an experimental common garden study, we assessed the relative influence of local assembly processes (i.e., soil environmental filtering and competition from spontaneous urban species) on the taxonomic and functional diversity of native plant communities sampled over four seasons in 2016-2018. Taxonomic and functional diversity exhibited different responses to local processes, supporting the general conclusion that species- and trait-based measures of biodiversity offer distinct insights into community assembly dynamics. Additionally, we found that neither soil nor competition from spontaneous urban species influenced taxonomic or functional composition of native species. Functional composition, however, did shift strongly over time and was driven by community-weighted mean differences in both measured traits (maximum height, Hmax; specific leaf area, SLA; leaf chlorophyll a fluorescence, chl a) and the relative proportions of different functional groups (legumes, annual and biennial-perennial species, C4 grasses, and forbs). In contrast, taxonomic composition only diverged between early and late seasons. Overall, our results indicate that native species are not only capable of establishing and persisting in vacant urban habitats, they can functionally respond to local filtering pressures over time. This suggests that regional dispersal limitation may be a primary factor limiting native species in urban environments. Thus, future regreening and management plans should focus on enhancing the dispersal potential of native plant species in urban environments, in order to achieve set goals for increasing native species diversity and associated ecosystem services in cities.


Author(s):  
Elizabeth M. Wandrag ◽  
Jane A. Catford

Abstract The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


Sign in / Sign up

Export Citation Format

Share Document