Invariants for slightly heated decaying grid turbulence

2013 ◽  
Vol 727 ◽  
pp. 379-406 ◽  
Author(s):  
R. A. Antonia ◽  
S. K. Lee ◽  
L. Djenidi ◽  
P. Lavoie ◽  
L. Danaila

AbstractThe paper examines the validity of velocity and scalar invariants in slightly heated and approximately isotropic turbulence generated by passive conventional grids. By assuming that the variances $\langle {u}^{2} \rangle $ and $\langle {\theta }^{2} \rangle $ ($u$ and $\theta $ represent the longitudinal velocity and temperature fluctuations) decay along the streamwise direction $x$ according to power laws $\langle {u}^{2} \rangle \sim {(x- {x}_{0} )}^{{n}_{u} } $ and $\langle {\theta }^{2} \rangle \sim {(x- {x}_{0} )}^{{n}_{\theta } } $ (${x}_{0} $ is the virtual origin of the flow) and with the further assumption that the one-point energy and scalar variance budgets are represented closely by a balance between the rates of change of $\langle {u}^{2} \rangle $ and $\langle {\theta }^{2} \rangle $ and the corresponding mean energy dissipation rates, the products $\langle {u}^{2} \rangle { \lambda }_{u}^{- 2{n}_{u} } $ and $\langle {\theta }^{2} \rangle { \lambda }_{\theta }^{- 2{n}_{\theta } } $ must remain constant with respect to $x$. Here ${\lambda }_{u} $ and ${\lambda }_{\theta } $ are the Taylor and Corrsin microscales. This is unambiguously supported by previously available data, as well as new measurements of $u$ and $\theta $ made at small Reynolds numbers downstream of three different biplane grids. Implications for invariants based on measured integral length scales of $u$ and $\theta $ are also tested after confirming that the dimensionless energy and scalar variance dissipation rate parameters are approximately constant with $x$. Since the magnitudes of ${n}_{u} $ and ${n}_{\theta } $ vary from grid to grid and may also depend on the Reynolds number, the Saffman and Corrsin invariants which correspond to a value of $- 1. 2$ for ${n}_{u} $ and ${n}_{\theta } $ are unlikely to apply in general. The effect of the Reynolds number on ${n}_{u} $ is discussed in the context of published data for both passive and active grids.

2019 ◽  
Vol 864 ◽  
pp. 244-272 ◽  
Author(s):  
L. Djenidi ◽  
R. A. Antonia ◽  
S. L. Tang

The problem of homogeneous isotropic turbulence (HIT) is revisited within the analytical framework of the Navier–Stokes equations, with a view to assessing rigorously the consequences of the scale invariance (an exact property of the Navier–Stokes equations) for any Reynolds number. The analytical development, which is independent of the 1941 (K41) and 1962 (K62) theories of Kolmogorov for HIT for infinitely large Reynolds number, is applied to the transport equations for the second- and third-order moments of the longitudinal velocity increment, $(\unicode[STIX]{x1D6FF}u)$. Once the normalised equations and the constraints required for complying with the scale-invariance property of the equations are presented, results derived from these equations and constraints are discussed and compared with measurements. It is found that the fluid viscosity, $\unicode[STIX]{x1D708}$, and the mean kinetic energy dissipation rate, $\overline{\unicode[STIX]{x1D716}}$ (the overbar denotes spatial and/or temporal averaging), are the only scaling parameters that make the equations scale-invariant. The analysis further leads to expressions for the distributions of the skewness and the flatness factor of $(\unicode[STIX]{x1D6FF}u)$ and shows that these distributions must exhibit plateaus (of different magnitudes) in the dissipative and inertial ranges, as the Taylor microscale Reynolds number $Re_{\unicode[STIX]{x1D706}}$ increases indefinitely. Also, the skewness and flatness factor of the longitudinal velocity derivative become constant as $Re_{\unicode[STIX]{x1D706}}$ increases; this is supported by experimental data. Further, the analysis, backed up by experimental evidence, shows that, beyond the dissipative range, the behaviour of $\overline{(\unicode[STIX]{x1D6FF}u)^{n}}$ with $n=2$, 3 and 4 cannot be represented by a power law of the form $r^{\unicode[STIX]{x1D701}_{n}}$ when the Reynolds number is finite. It is shown that only when $Re_{\unicode[STIX]{x1D706}}\rightarrow \infty$ can an $n$-thirds law (i.e. $\overline{(\unicode[STIX]{x1D6FF}u)^{n}}\sim r^{\unicode[STIX]{x1D701}_{n}}$, with $\unicode[STIX]{x1D701}_{n}=n/3$) emerge, which is consistent with the onset of a scaling range.


2015 ◽  
Vol 779 ◽  
pp. 544-555 ◽  
Author(s):  
L. Djenidi ◽  
Md. Kamruzzaman ◽  
R. A. Antonia

Hot-wire measurements are carried out in grid-generated turbulence at moderate to low Taylor microscale Reynolds number $Re_{{\it\lambda}}$ to assess the appropriateness of the commonly used power-law decay for the mean turbulent kinetic energy (e.g. $k\sim x^{n}$, with $n\leqslant -1$). It is found that in the region outside the initial and final periods of decay, which we designate a transition region, a power law with a constant exponent $n$ cannot describe adequately the decay of turbulence from its initial to final stages. One is forced to use a family of power laws of the form $x^{n_{i}}$, where $n_{i}$ is a different constant over a portion $i$ of the decay time during the decay period. Accordingly, it is currently not possible to determine whether any grid-generated turbulence reported in the literature decays according to Saffman or Batchelor because the reported data fall in the transition period where $n$ differs from its initial and final values. It is suggested that a power law of the form $k\sim x^{n_{init}+m(x)}$, where $m(x)$ is a continuous function of $x$, could be used to describe the decay from the initial period to the final stage. The present results, which corroborate the numerical simulations of decaying homogeneous isotropic turbulence of Orlandi & Antonia (J. Turbul., vol. 5, 2004, doi:10.1088/1468-5248/5/1/009) and Meldi & Sagaut (J. Turbul., vol. 14, 2013, pp. 24–53), show that the values of $n$ reported in the literature, and which fall in the transition region, have been mistakenly assigned to the initial stage of decay.


2015 ◽  
Vol 773 ◽  
pp. 345-365 ◽  
Author(s):  
L. Djenidi ◽  
R. A. Antonia

A general framework of self-preservation (SP) is established, based on the transport equation of the second-order longitudinal velocity structure function in decaying homogeneous isotropic turbulence (HIT). The analysis introduces the skewness of the longitudinal velocity increment, $S(r,t)$ ($r$ and $t$ are space increment and time), as an SP controlling parameter. The present SP framework allows a critical appraisal of the specific assumptions that have been made in previous SP analyses. It is shown that SP is achieved when $S(r,t)$ varies in a self-similar manner, i.e. $S=c(t){\it\phi}(r/l)$ where $l$ is a scaling length, and $c(t)$ and ${\it\phi}(r/l)$ are dimensionless functions of time and $(r/l)$, respectively. When $c(t)$ is constant, $l$ can be identified with the Kolmogorov length scale ${\it\eta}$, even when the Reynolds number is relatively small. On the other hand, the Taylor microscale ${\it\lambda}$ is a relevant SP length scale only when certain conditions are met. The decay law for the turbulent kinetic energy ($k$) ensuing from the present SP is a generalization of the existing laws and can be expressed as $k\sim (t-t_{0})^{n}+B$, where $B$ is a constant representing the energy of the motions whose scales are excluded from the SP range of scales. When $B=0$, SP is achieved at all scales of motion and ${\it\lambda}$ becomes a relevant scaling length together with ${\it\eta}$. The analysis underlines the relation between the initial conditions and the power-law exponent $n$ and also provides a link between them. In particular, an expression relating $n$ to the initial values of the scaling length and velocity is developed. Finally, the present SP analysis is consistent with both experimental grid turbulence data and the eddy-damped quasi-normal Markovian numerical simulation of decaying HIT by Meldi & Sagaut (J. Turbul., vol. 14, 2013, pp. 24–53).


2017 ◽  
Vol 818 ◽  
pp. 184-204 ◽  
Author(s):  
Alejandro J. Puga ◽  
John C. LaRue

Time-resolved velocity measurements are obtained using a hot-wire in a nearly homogeneous and isotropic flow downstream of an active grid for a range of Taylor Reynolds numbers from$191$to$659$. It is found that the dimensionless dissipation rate,$C_{\unicode[STIX]{x1D716}}$, is nearly a constant for sufficiently high values of Taylor Reynolds number,$R_{\unicode[STIX]{x1D706},u_{q}}$, and is approximately equal to$0.87$. This value is approximately$5\,\%$less than the value reported by Boset al.(Phys. Fluids, vol. 19 (4), 2007, 045101), which is obtained using DNS/LES (direct numerical simulation combined with large eddy simulation) for decaying homogeneous and isotropic turbulence, and is in excellent agreement with the active grid experiment of Thormann & Meneveau (Phys. Fluids, vol. 26 (2), 2014, 025112.). The results presented herein show that deviation from isotropy may cause inconsistencies in the computation of$C_{\unicode[STIX]{x1D716}}$. As a result, it is suggested that the velocity scale be the square root of the turbulence kinetic energy. The integral length scale measurements obtained from the longitudinal velocity correlation are in close agreement with the integral length scale measured from the peak of the energy spectrum,$\unicode[STIX]{x1D705}E_{11}(\unicode[STIX]{x1D705})$, where$\unicode[STIX]{x1D705}$is the wavenumber and$E_{11}(\unicode[STIX]{x1D705})$is the one-dimensional power spectrum of the downstream velocity.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Nicola de Divitiis

The purpose of this paper is to improve a hypothesis of the previous work of N. de Divitiis (2011) dealing with the finite-scale Lyapunov analysis of isotropic turbulence. There, the analytical expression of the structure function of the longitudinal velocity differenceΔuris derived through a statistical analysis of the Fourier transformed Navier-Stokes equations and by means of considerations regarding the scales of the velocity fluctuations, which arise from the Kolmogorov theory. Due to these latter considerations, this Lyapunov analysis seems to need some of the results of the Kolmogorov theory. This work proposes a more rigorous demonstration which leads to the same structure function, without using the Kolmogorov scale. This proof assumes that pair and triple longitudinal correlations are sufficient to determine the statistics ofΔurand adopts a reasonable canonical decomposition of the velocity difference in terms of proper stochastic variables which are adequate to describe the mechanism of kinetic energy cascade.


1970 ◽  
Vol 41 (2) ◽  
pp. 435-452 ◽  
Author(s):  
H. K. Moffatt

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2094 ◽  
Author(s):  
Mustafa Erguvan ◽  
David MacPhee

In this study, energy and exergy analyses have been investigated numerically for unsteady cross-flow over heated circular cylinders. Numerous simulations were conducted varying the number of inline tubes, inlet velocity, dimensionless pitch ratios and Reynolds number. Heat leakage into the domain is modeled as a source term. Numerical results compare favorably to published data in terms of Nusselt number and pressure drop. It was found that the energy efficiency varies between 72% and 98% for all cases, and viscous dissipation has a very low effect on the energy efficiency for low Reynolds number cases. The exergy efficiency ranges from 40–64%, and the entropy generation due to heat transfer was found to have a significant effect on exergy efficiency. The results suggest that exergy efficiency can be maximized by choosing specific pitch ratios for various Reynolds numbers. The results could be useful in designing more efficient heat recovery systems, especially for low temperature applications.


2007 ◽  
Vol 591 ◽  
pp. 255-288 ◽  
Author(s):  
T. K. SENGUPTA ◽  
T. T. LIM ◽  
SHARANAPPA V. SAJJAN ◽  
S. GANESH ◽  
J. SORIA

Accelerated flow past a NACA 0015 aerofoil is investigated experimentally and computationally for Reynolds number Re = 7968 at an angle of attack α = 30°. Experiments are conducted in a specially designed piston-driven water tunnel capable of producing free-stream velocity with different ramp-type accelerations, and the DPIV technique is used to measure the resulting flow field past the aerofoil. Computations are also performed for other published data on flow past an NACA 0015 aerofoil in the range 5200 ≤ Re ≤ 35000, at different angles of attack. One of the motivations is to see if the salient features of the flow captured experimentally can be reproduced numerically. These computations to solve the incompressible Navier–Stokes equation are performed using high-accuracy compact schemes. Load and moment coefficient variations with time are obtained by solving the Poisson equation for the total pressure in the flow field. Results have also been analysed using the proper orthogonal decomposition technique to understand better the evolving vorticity field and its dependence on Reynolds number and angle of attack. An energy-based stability analysis is performed to understand unsteady flow separation.


Author(s):  
G. K. Batchelor

A new and fruitful theory of turbulent motion was published in 1941 by A. N. Kolmogoroff. It does not seem to be as widely known outside the U.S.S.R. as its importance warrants, and the present paper therefore describes the theory in some detail before presenting a number of extensions and making a comparison of experimental results with some of the theoretical predictions.Kolmogoroff's basic notion is that at high Reynolds number all kinds of turbulent motion, of arbitrary mean-flow characteristics, show a similar structure if attention is confined to the smallest eddies. The motion due to these eddies of limited size is conceived to be isotropic and statistically steady. Within this range of eddies we recognize two limiting processes. The influence of viscosity on the larger eddies of the range is negligible if the Reynolds number is large enough, so that their motion is determined entirely by the amount of energy which they are continually passing on to smaller eddies. This quantity of energy is the local mean energy dissipation due to turbulence. On the other hand, the smaller eddies of the range dissipate through the action of viscosity a considerable proportion of the energy which they receive, and the motion of the very smallest eddies is entirely laminar. The analytical expression of this physical picture is that the motion due to eddies less than a certain limiting size in an arbitrary field of turbulence is determined uniquely by two quantities, the viscosity and the local mean energy dissipation per unit mass of the fluid.The mathematical method of describing the motion due to eddies of a particular size is to construct correlations between the differences of parallel-velocity components at two points at an appropriate distance apart. Kinematical results analogous to those for turbulence which is isotropic in the ordinary sense are obtained, and then the scalar functions occurring in the expressions for the correlations are determined by dimensional analysis. The consequences of the theory in the case of turbulence which possesses ordinary isotropy are analysed and various predictions are made. One of these, namely that dimensionless ratios of moments of the probability distribution of the rate of extension of the fluid in any direction are universal constants, is confirmed by recent experiments, so far as the second and third moments are concerned. In several other cases it can be said that relations predicted by the theory have the correct form, but further experiments at Reynolds numbers higher than those hitherto used will be required before the theory can be regarded as fully confirmed. If valid, Kolmogoroff's theory of locally isotropic turbulence will provide a powerful tool for the analysis of problems of non-uniform turbulent flow, and for the determination of statistical characteristics of space and time derivatives of quantities influenced by the turbulence.


1981 ◽  
Vol 104 ◽  
pp. 419-443 ◽  
Author(s):  
J. Léorat ◽  
A. Pouquet ◽  
U. Frisch

Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers RV of the order of 107 and are therefore highly turbulent.This leads us to investigate the behaviour of MHD turbulence with high RV and low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity we restrict ourselves to homogeneous and isotropic turbulence, but we do include helicity.We obtain a critical magnetic Reynolds number RMc of the order of a few tens (non-helical case) above which magnetic energy is present. RMc is practically independent of RV (in the range 40 to 106). RMc can be considerably decreased by the presence of helicity: when the overall size of the flow L is much larger than the integral scale l0, RMc can drop below unity as suggested by an α-effect argument. When L ≈ l0 the drop can still be substantial (factor of 6) when helicity is a maximum. We examine how the turbulence is modified when RM crosses RMc: presence of magnetic energy, decreased kinetic energy, steepening of kinetic-energy spectrum, etc.We make no attempt to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding RMc, such as decreased turbulent heat transport. More precise information may be obtained from numerical simulations and experiments (including some in the subcritical regime).


Sign in / Sign up

Export Citation Format

Share Document