scholarly journals Swimming in shear

2014 ◽  
Vol 744 ◽  
pp. 1-4 ◽  
Author(s):  
David Saintillan

AbstractThe complex patterns observed in experiments on suspensions of swimming cells undergoing bioconvection have fascinated biologists, physicists and mathematicians alike for over a century. Theoretical models developed over the last few decades have shown a strong similarity with Rayleigh–Bénard thermal convection, albeit with a richer dynamical behaviour due to the orientational degrees of freedom of the cells. In a recent paper, Hwang & Pedley (J. Fluid Mech., vol. 738, 2014, pp. 522–562) revisit previous models for bioconvection to investigate the effects of an external shear flow on pattern formation. In addition to casting light on new mechanisms for instability, their study demonstrates a subtle interplay between shear, swimming motions and bioconvection patterns.

1997 ◽  
Vol 350 ◽  
pp. 271-293 ◽  
Author(s):  
PAUL MATTHEWS ◽  
STEPHEN COX

In many geophysical and astrophysical contexts, thermal convection is influenced by both rotation and an underlying shear flow. The linear theory for thermal convection is presented, with attention restricted to a layer of fluid rotating about a horizontal axis, and plane Couette flow driven by differential motion of the horizontal boundaries.The eigenvalue problem to determine the critical Rayleigh number is solved numerically assuming rigid, fixed-temperature boundaries. The preferred orientation of the convection rolls is found, for different orientations of the rotation vector with respect to the shear flow. For moderate rates of shear and rotation, the preferred roll orientation depends only on their ratio, the Rossby number.It is well known that rotation alone acts to favour rolls aligned with the rotation vector, and to suppress rolls of other orientations. Similarly, in a shear flow, rolls parallel to the shear flow are preferred. However, it is found that when the rotation vector and shear flow are parallel, the two effects lead counter-intuitively (as in other, analogous convection problems) to a preference for oblique rolls, and a critical Rayleigh number below that for Rayleigh–Bénard convection.When the boundaries are poorly conducting, the eigenvalue problem is solved analytically by means of an asymptotic expansion in the aspect ratio of the rolls. The behaviour of the stability problem is found to be qualitatively similar to that for fixed-temperature boundaries.Fully nonlinear numerical simulations of the convection are also carried out. These are generally consistent with the linear stability theory, showing convection in the form of rolls near the onset of motion, with the appropriate orientation. More complicated states are found further from critical.


Author(s):  
Rémi Vachon ◽  
Mohsen Bazargan ◽  
Christoph F Hieronymus ◽  
Erika Ronchin ◽  
Bjarne Almqvist

Summary Elongate inclusions immersed in a viscous fluid generally rotate at a rate that is different from the local angular velocity of the flow. Often, a net alignment of the inclusions develops, and the resulting shape preferred orientation (SPO) of the particle ensemble can then be used as a strain marker that allows reconstruction of the fluid’s velocity field. Much of the previous work on the dynamics of flow-induced particle rotations has focused on spatially homogeneous flows with large-scale tectonic deformations as the main application. Recently, the theory has been extended to spatially varying flows, such as magma with embedded crystals moving through a volcanic plumbing system. Additionally, an evolution equation has been introduced for the probability density function (PDF) of crystal orientations. Here, we apply this new theory to a number of simple, two-dimensional flow geometries commonly encountered in magmatic intrusions, such as flow from a dyke into a reservoir or from a reservoir into a dyke, flow inside an inflating or deflating reservoir, flow in a dyke with a sharp bend, and thermal convection in a magma chamber. The main purpose is to provide a guide for interpreting field observations and for setting up more complex flow models with embedded crystals. As a general rule, we find that a larger aspect ratio of the embedded crystals causes a more coherent alignment of the crystals, while it has only a minor effect on the geometry of the alignment pattern. Due to various perturbations in the crystal rotation equations that are expected in natural systems, we show that the time-periodic behavior found in idealized systems is probably short-lived in nature, and the crystal alignment is well described by the time-averaged solution. We also confirm some earlier findings. For example, near channel walls, fluid flow often follows the bounding surface and the resulting simple shear flow causes preferred crystal orientations that are approximately parallel to the boundary. Where pure shear deformation dominates, there is a tendency for crystals to orient themselves in the direction of the greatest tensile strain rate. Where flow impinges on a boundary, for example in an inflating magma chamber or as part of a thermal convection pattern, the stretching component of pure shear aligns with the boundary, and the crystals orient themselves in that direction. In the field, this local pattern may be difficult to distinguish from a boundary-parallel simple shear flow. Pure shear also dominates along the walls of a deflating magma chamber and in places where the flow turns away from the reservoir walls, but in these locations, the preferred crystal orientation is perpendicular to the wall. Overall, we find that our calculated patterns of crystal orientations agree well with results from analogue experiments where similar geometries are available.


2021 ◽  
Vol 922 (1) ◽  
pp. 48
Author(s):  
H. Saleem ◽  
Shaukat Ali Shan ◽  
A. Rehman

Abstract Theoretical models are presented to show that expansion of plasma in the radial direction from a denser solar surface to a rarefied upper atmosphere with short-scale inhomogeneous field-aligned flows and currents in the form of thin threads itself is an important source of electrostatic instabilities. Multifluid theory shows that the shear flow–driven purely growing electric fields appear in the transition region. On the other hand, plasma kinetic theory predicts that the short-scale current sheets (or filaments) produce current-driven electrostatic ion acoustic (CDEIA) waves in the hydrogen plasma of the transition region that damp out in the system through wave–particle interactions and increase the temperature. Similar processes take place in the solar corona and act positively for increasing the temperature further and maintaining it. The shear flow–driven instabilities and CDEIA waves have short perpendicular wavelengths of the order of 1 m and low frequencies of the order of 1 or several Hz when the ions’ shear flow scale length is considered to be of the order of 1 km. It is pointed out that the purely growing fluid instabilities turn into oscillatory instabilities and the growth rates of kinetic CDEIA wave instabilities are reduced when the dynamics of 10% helium ions is taken into account along with 90% hydrogen ions. Therefore, the role of helium ions should not be ignored in the study of wave dynamics in solar plasma.


1983 ◽  
Vol 29 (102) ◽  
pp. 283-285 ◽  
Author(s):  
Thomas Scheiwiller ◽  
Kolumban Hutter

Abstract The paper of which this is an extended abstract reviews theoretical formulations for flow and airborne powder-snow avalanches. First powder-snow avalanches are considered as plane turbulent gravity currents. Then we propose a two-phase model describing powder-snow avalanches as turbulent binary mixtures of snow granules and air. An analogy is postulated between flow avalanches and the rapid shear flow of granular materials which leads to a non-polar continuum with microstructure taking into account the fluctuation energy of the snow granules.


1990 ◽  
Vol 138 ◽  
pp. 217-228 ◽  
Author(s):  
Franz - Ludwig Deubner

The solar photosphere is the outer boundary of the cavity which defines the spectrum of the global p-modes. It is also the lowest layer that permits direct observation of the boiling mixture of motions which eventually create the complex patterns apparent in the chromosphere and corona. Studies of the dynamical behaviour of this layer are therefore of paramount importance for an overall understanding of the dynamic sun.


1995 ◽  
Vol 302 ◽  
pp. 45-63 ◽  
Author(s):  
W. S. J. Uijttewaal ◽  
E. J. Nijhof

A fluid droplet subjected to shear flow deforms and rotates in the flow. In the presence of a wall the droplet migrates with respect to a material element in the undisturbed flow field. Neglecting fluid inertia, the Stakes problem for the droplet is solved using a boundary integral technique. It is shown how the time-dependent deformation, orientation, circulation and droplet viscosity. The migration velocities are calculated in the directions parallel and perpendicular to the wall, and compared with theoretical models and expeeriments. The results reveal some of the shortcomings of existiong models although not all diserepancies between our calculations and known experiments could be clarified.


1990 ◽  
Vol 41 (2) ◽  
pp. 863-873 ◽  
Author(s):  
Layachi Hadji ◽  
Mark Schell ◽  
D. N. Riahi

Sign in / Sign up

Export Citation Format

Share Document