Two-dimensional planar plumes and fountains

2014 ◽  
Vol 750 ◽  
pp. 210-244 ◽  
Author(s):  
T. S. van den Bremer ◽  
G. R. Hunt

AbstractClosed-form solutions describing the behaviour of two-dimensional planar turbulent rising plumes and fountains from horizontal planar area and line sources in unconfined quiescent environments of uniform density are proposed. Extending the analysis on axisymmetric releases by van den Bremer & Hunt (J. Fluid Mech., vol. 644, 2010, pp. 165–192) to planar releases, the local flux balance parameter $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\varGamma =\varGamma (z)$ is instrumental in describing the bulk behaviour of steady Boussinesq and non-Boussinesq planar plumes and the initial rise behaviour of Boussinesq planar fountains as a function of height $z$. Expressions for the asymptotic virtual source correction are developed and the results elucidated by ‘scale diagrams’ (cf. Morton & Middleton, J. Fluid Mech., vol. 58, 1973, pp. 165–176) showing certain characteristic heights for different source conditions. These diagrams capture all the different manifestations of plume behaviour, encompassing fountains, jets, source-momentum-dominated or ‘forced’ plumes, pure plumes and source-buoyancy-dominated or ‘lazy’ plumes, and their associated key features. Other flow features identified include a gravity-driven deceleration regime and a mixing-driven regime for forced fountains. Deceleration in lazy fountains is purely gravity-driven. The results can be shown to be valid for both Boussinesq and non-Boussinesq plumes (but not for non-Boussinesq fountains) thus resulting in universal solutions valid for both cases provided the entrainment velocity is unaffected by non-Boussinesq effects. This paper presents and explores these universal solutions. An accompanying paper (van den Bremer & Hunt, J. Fluid Mech., vol. 750, 2014, pp. 245–258) examines the implications for non-Boussinesq plumes. The existing solutions of Lee & Emmons (J. Fluid Mech., vol. 11, 1961, pp. 353–368) generalized herein are valid for a constant entrainment coefficient $\alpha $. New results for an entrainment coefficient that varies linearly with $\varGamma (z)$ and thus captures experimental values far more realistically are presented for forced plumes.

2014 ◽  
Vol 750 ◽  
pp. 245-258 ◽  
Author(s):  
T. S. van den Bremer ◽  
G. R. Hunt

AbstractIn an accompanying paper (van den Bremer & Hunt, J. Fluid Mech., vol. 750, 2014, pp. 210–244) closed-form solutions, describing the behaviour of two-dimensional planar turbulent rising plumes from horizontal planar area and line sources in unconfined quiescent environments of uniform density, that are universally applicable to Boussinesq and non-Boussinesq plumes, are proposed. This universality relies on an entrainment velocity unmodified by non-Boussinesq effects, an assumption that is derived in the literature based on similarity arguments and is, in fact, in contradiction with the axisymmetric case, in which entrainment is modified by non-Boussinesq effects. Exploring these solutions, we show that a non-Boussinesq plume model predicts exactly the same behaviour with height for a pure plume as would a Boussinesq model, whereas the effects on forced and lazy plumes are opposing. Non-intuitively, the non-Boussinesq model predicts larger fluxes of volume and mass for lazy plumes, but smaller fluxes for forced plumes at any given height compared to the Boussinesq model. This raises significant questions regarding the validity of the unmodified entrainment model for planar non-Boussinesq plumes based on similarity arguments and calls for detailed experiments to resolve this debate.


2010 ◽  
Vol 644 ◽  
pp. 165-192 ◽  
Author(s):  
T. S. VAN DEN BREMER ◽  
G. R. HUNT

Closed-form solutions describing the behaviour of buoyant axisymmetric turbulent rising plumes and fountains, emitted vertically from area sources in unconfined quiescent environments of uniform density, are proposed in a form that is universally applicable to Boussinesq and non-Boussinesq plumes. This paper, thereby, generalizes the results obtained separately for steady Boussinesq and non-Boussinesq plumes, including asymptotic virtual source corrections. The flux balance parameter Γ = Γ(z), a local Richardson number, is instrumental in describing the behaviour of steady plumes and the initial rise behaviour of fountains with height z. Non-dimensional graphs (cf. the ‘scale diagrams’ of Morton & Middleton, J. Fluid Mech., vol. 58, 1973, pp. 165–176) are plotted, showing certain characteristic heights for different source conditions, characterized by one single source flux balance parameter, giving a unique representation of the behaviour of Boussinesq fountains and both Boussinesq and non-Boussinesq plumes. Finally, a length scale has been identified that characterizes the height over which non-Boussinesq effects are important for lazy plumes rising from area sources.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this article, we investigate a two-dimensional generalized shallow water wave equation. Lie symmetries of the equation are computed first and then used to perform symmetry reductions. By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear momentum conservation laws for the underlying equation are computed by engaging the multiplier approach as well as Noether’s theorem.


1981 ◽  
Vol 103 (3) ◽  
pp. 471-477 ◽  
Author(s):  
W. F. Phillips

Theoretical results are presented which predict the entrainment coefficient in a forced plume as a function of the local Froude number. The model does not require any external specification of the velocity and temperature profiles. The Froude number for any plume, in a motionless isothermal ambient, approaches a universal constant, at a large distance above the source. However, it is shown here that the development length for the Froude number, in plumes with high discharge Froude number, is of the order of a few hundred times the discharge width.


1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


1986 ◽  
Vol 108 (4) ◽  
pp. 407-413
Author(s):  
Y. Tsujimoto ◽  
K. Imaichi ◽  
T. Moritani ◽  
K. Kim

Apparent mass torque coefficients for fluctuations of flow rate and angular velocity are determined experimentally for two-dimensional centrifugal impellers. Nearly sinusoidal fluctuations of flow rate and angular velocity are produced by using crank mechanisms, and the resulting unsteady torque on the impeller is measured. The torque is divided into components in-phase and out-of-phase with the displacements. The in-phase components are used to determine the apparent mass coefficients. Drag torque coefficients are defined and used to represent the out-of-phase components. The tests are conducted under various frequencies and amplitudes of the fluctuations with zero mean flow rate and rotational velocity. The apparent mass torque coefficients are compared with theoretical values obtained under the assumption of a two-dimensional potential flow. The experimental values are 5 to 20 percent larger than the theoretical ones and no appreciable effects of the frequency and the amplitude are observed within the range of the experiments.


Author(s):  
Himangshu Das

Debris flow are gravity driven mass flows which can create catastrophic geohazards along their overriding paths. Driven by the gravity, debris flow can travel long distances on favorable continental slopes. Their frontal velocity can be very high which may pose significant threat to offshore installations such as subsea pipelines, communication cables and offshore platforms (Yuan et. al., 2012). Therefore, understanding their dynamic behavior is critical in order to mitigate potential geohazards. The specific objective of this paper is to present a coupled two dimensional numerical model that characterizes debris flow movement, rheological properties and its interaction with subsea installations. For demonstration purpose, the coupled model has been applied to schematized settings representing generalized continental shelves with canyons.Recorded Presentation from the vICCE (YouTube Link):


Author(s):  
Yujia Liu ◽  
Sifan Peng ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

Abstract The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense. In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.


2003 ◽  
Vol 487 ◽  
pp. 147-166 ◽  
Author(s):  
MICHEL M. J. DECR ◽  
JEAN-CHRISTOPHE BARET

Sign in / Sign up

Export Citation Format

Share Document