Experimental Study on Gravity Driven Discharging of Quasi-Two-Dimensional Pebble Bed Based on Mathematical Morphology

Author(s):  
Yujia Liu ◽  
Sifan Peng ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

Abstract The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense. In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.


2021 ◽  
Author(s):  
Yujia Liu ◽  
Sifan Peng ◽  
Nan Gui ◽  
Xing-Tuan Yang ◽  
Jiyuan Tu ◽  
...  


2019 ◽  
Vol 43 (4) ◽  
pp. 653-660 ◽  
Author(s):  
M.V. Gashnikov

Adaptive multidimensional signal interpolators are developed. These interpolators take into account the presence and direction of boundaries of flat signal regions in each local neighborhood based on the automatic selection of the interpolating function for each signal sample. The selection of the interpolating function is performed by a parameterized rule, which is optimized in a parametric lower dimensional space. The dimension reduction is performed using rank filtering of local differences in the neighborhood of each signal sample. The interpolating functions of adaptive interpolators are written for the multidimensional, three-dimensional and two-dimensional cases. The use of adaptive interpolators in the problem of compression of multidimensional signals is also considered. Results of an experimental study of adaptive interpolators for real multidimensional signals of various types are presented.



Author(s):  
V. Vlasenko ◽  
A. Shiryaeva

New quasi-two-dimensional (2.5D) approach to description of three-dimensional (3D) flows in ducts is proposed. It generalizes quasi-one-dimensional (quasi-1D, 1.5D) theories. Calculations are performed in the (x; y) plane, but variable width of duct in the z direction is taken into account. Derivation of 2.5D approximation equations is given. Tests for verification of 2.5D calculations are proposed. Parametrical 2.5D calculations of flow with hydrogen combustion in an elliptical combustor of a high-speed aircraft, investigated within HEXAFLY-INT international project, are described. Optimal scheme of fuel injection is found and explained. For one regime, 2.5D and 3D calculations are compared. The new approach is recommended for use during preliminary design of combustion chambers.



2019 ◽  
Vol 11 (7) ◽  
pp. 577-583 ◽  
Author(s):  
Aleksey Barkhatov ◽  
Evgenii Vorobev ◽  
Vladimir Veremyev ◽  
Vladimir Kutuzov

This article presents the configuration and technical specification of the passive radar exploiting third-party transmitters of second-generation digital video broadcasting standard DVB-T2 as illuminators of opportunity. The performance of the two-dimensional (2D) passive radar estimated based on theoretical and experimental study is described. The possible configuration of the 2D non-equidistant antenna array for the three-dimensional (3D) passive radar is proposed to ensure the 3D localization of detected targets. The experimental results on drone detection conducted with the 3D passive radar show that the radar with the 2D antenna array is capable to measure not only azimuth but also elevation and consequently target altitude.



Author(s):  
Chaoyong Deng ◽  
Jian Yin ◽  
Hongbo Zhang ◽  
Xiang Xiong ◽  
Pei Wang ◽  
...  

Current-carrying sliding tests were performed on an HST-100 high-speed multifunction friction and wear tester. Cf/Cu/C composite was used as the pin, and commercial QCr0.5 was employed as the disk. Sliding tests were carried out at a speed of 30 m/s and a load of 70 N under 25 A, 50 A, 75 A, and 100 A, respectively. Light intensity was collected by a photodiode, and the arc discharge process was recorded by a high-speed camera (HX-5) with a capture rate of 20,000 fp/s. The worn surfaces were characterized by a Nova NanoSEM230 scanning electron microscope and a NANO Focus AG three-dimensional topography instrument. The result indicates that arc discharge occurs randomly, both temporally and spatially, as long as the condition is suitable and occurs more at the beginning and end of the friction process. The arc moves constantly along the friction direction to the outlet. Compared to the inlet, the erosion of the outlet is considerably worse. This finding indicates the arc is moving towards the outlet and grows by a large margin when it leaves the friction surface at the outlet end.



Author(s):  
N Fang

Traditionally, cutting tools made of sintered carbides or high-speed steels are used to cut a variety of metal materials in the experimental study on chip control. One of the existing problems is that, in most cases, it is difficult to make, in a laboratory, cutting tools with a three-dimensionally shaped chip breaking groove for use in the follow-up experiments. Turning to tool manufacturers, who use the powder metallurgy techniques of tool making for help, usually leads to a long experimental period and high cost. An auxiliary approach to the experimental study on chip control, called a kinematically simulated test (KST), is proposed in this present work to overcome the above shortcoming of the traditional method employed in the experimental study on chip control. A plexiglass-made cutting tool is employed to cut a commercially available paraffin wax to simulate some kinematic phenomena (such as chip flow and chip curl) which take place during practical machining processes. After the applied range of KST has been illustrated, two examples of applying KST are given. One is the application of KST to chip flow research. The other is optimizing the geometry of the chip breaking groove of a tool insert by means of KST. Both examples involve the making of the chip breaking grooves with the three-dimensional shape and geometry.



Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.



Author(s):  
Feng Liang ◽  
Quanyong Xu ◽  
Xudong Lan ◽  
Ming Zhou

The thermohydrodynamic analysis of oil film bearing is essential for high speed oil film bearing. The temperature field is coupled with the pressure field. The numerical model can be built or chosen according to the complexity of the objects and requirement of the accuracy. In this paper, four pressure-thermal (P-T) models are proposed, which are zero-dimensional temperature field coupled with Reynolds equation (0D P-T model), two-dimensional temperature field coupled with Reynolds equation (2D P-T model), two-dimensional temperature with third dimensional correction coupled with Dawson equation (2sD P-T model), three-dimensional temperature field coupled with Dawson equation (3D P-T model). The non-Newtonian and temperature-viscosity effects of the lubrication oil are considered in all the four models. Two types of cylindrical journal bearing, the bearing with/without axial grooves, are applied for the simulation. All the simulated cases are compared with the solutions of the CFX. The results show that the 0D P-T model fails to predict the behavior of high speed bearing; The 2D and 2sD P-T model have an acceptable accuracy to predict the performance of the bearing without grooves, but are not able to simulate the P-T field of the bearing with grooves because of the under-developed thermal boundary layer; The 2sD P-T model shows a great improvement when calculating the pressure field compared with the 2D P-T model; the 3D P-T model coincides well with the CFX at any condition. The comparison of these four models provides a reference to help designer choose a proper numerical model for a certain project.



1968 ◽  
Vol 8 (02) ◽  
pp. 185-194 ◽  
Author(s):  
J.E. Briggs ◽  
T.N. Dixon

Abstract A study was made of numerical techniques for solving the large sets of simultaneous equations that arise in the mathematical modeling of oil reservoir behavior. It was found that noniterative techniques, such as the Alternating Direction Implicit (ADI) method, as well as some other finite difference approximations, produce oscillatory or unsmooth results for large time steps. Estimates of time step sizes sufficient to avoid such behavior are given. A comparison was made of the Point Successive Over-Relaxation (PSOR), Two-Line Cyclic Chebyshev Semi-Iterative SOR (2LCC), and iterative ADI methods, with respect to speed of solution of a test problem. It was found that, when applicable, iterative ADI is fastest for problems involving many points, while 2LCC is preferable for smaller problems. Introduction With the advent of high speed, large memory, digital computers, there has been an increasing emphasis on the development of improved methods for simulating and predicting reservoir performance. Two-dimensional, three-phase reservoir models with various combinations of PVT effects, as well as gravity and capillary forces, are common throughout the industry. Such models are also available through consulting firms, to anyone desiring to use them. Three-dimensional models will probably be practical in only a few years. We conducted a study of some of the numerical methods used for solving the large sets of simultaneous equations that arise in such models. A typical set of equations for a reservoir model is shown below: ..............(1) .............(2) .............(3) ..............(4) where a = 5.615 cu ft/bbl. In addition to Eqs. 1 through 4, one also would have to specify the conditions at the boundaries of the reservoir or aquifer being studied. Equations such as these are normally approximated by finite difference techniques and solved numerically because of their complexity. In deciding how to solve such equations, a number of decisions must be made. It is not our intention to cover all facets of the problem, but rather to concentrate on one of the important aspects, such as solving Eq. 1. SPEJ P. 185ˆ



Sign in / Sign up

Export Citation Format

Share Document