scholarly journals A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow

2015 ◽  
Vol 774 ◽  
pp. 143-169 ◽  
Author(s):  
J.-H. Xie ◽  
J. Vanneste

Wind forcing of the ocean generates a spectrum of inertia–gravity waves that is sharply peaked near the local inertial (or Coriolis) frequency. The corresponding near-inertial waves (NIWs) are highly energetic and play a significant role in the slow, large-scale dynamics of the ocean. To analyse this role, we develop a new model of the non-dissipative interactions between NIWs and balanced motion. The model is derived using the generalised-Lagrangian-mean (GLM) framework (specifically, the ‘glm’ variant of Soward & Roberts, J. Fluid Mech., vol. 661, 2010, pp. 45–72), taking advantage of the time-scale separation between the two types of motion to average over the short NIW period. We combine Salmon’s (J. Fluid Mech., vol. 719, 2013, pp. 165–182) variational formulation of GLM with Whitham averaging to obtain a system of equations governing the joint evolution of NIWs and mean flow. Assuming that the mean flow is geostrophically balanced reduces this system to a simple model coupling Young & Ben Jelloul’s (J. Mar. Res., vol. 55, 1997, pp. 735–766) equation for NIWs with a modified quasi-geostrophic (QG) equation. In this coupled model, the mean flow affects the NIWs through advection and refraction; conversely, the NIWs affect the mean flow by modifying the potential-vorticity (PV) inversion – the relation between advected PV and advecting mean velocity – through a quadratic wave term, consistent with the GLM results of Bühler & McIntyre (J. Fluid Mech., vol. 354, 1998, pp. 301–343). The coupled model is Hamiltonian and its conservation laws, for wave action and energy in particular, prove illuminating: on their basis, we identify a new interaction mechanism whereby NIWs forced at large scales extract energy from the balanced flow as their horizontal scale is reduced by differential advection and refraction so that their potential energy increases. A rough estimate suggests that this mechanism could provide a significant sink of energy for mesoscale motion and play a part in the global energetics of the ocean. Idealised two-dimensional models are derived and simulated numerically to gain insight into NIW–mean-flow interaction processes. A simulation of a one-dimensional barotropic jet demonstrates how NIWs forced by wind slow down the jet as they propagate into the ocean interior. A simulation assuming plane travelling NIWs in the vertical shows how a vortex dipole is deflected by NIWs, illustrating the irreversible nature of the interactions. In both simulations energy is transferred from the mean flow to the NIWs.

2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


1999 ◽  
Vol 390 ◽  
pp. 325-348 ◽  
Author(s):  
S. NAZARENKO ◽  
N. K.-R. KEVLAHAN ◽  
B. DUBRULLE

A WKB method is used to extend RDT (rapid distortion theory) to initially inhomogeneous turbulence and unsteady mean flows. The WKB equations describe turbulence wavepackets which are transported by the mean velocity and have wavenumbers which evolve due to the mean strain. The turbulence also modifies the mean flow and generates large-scale vorticity via the averaged Reynolds stress tensor. The theory is applied to Taylor's four-roller flow in order to explain the experimentally observed reduction in the mean strain. The strain reduction occurs due to the formation of a large-scale vortex quadrupole structure from the turbulent spot confined by the four rollers. Both turbulence inhomogeneity and three-dimensionality are shown to be important for this effect. If the initially isotropic turbulence is either homogeneous in space or two-dimensional, it has no effect on the large-scale strain. Furthermore, the turbulent kinetic energy is conserved in the two-dimensional case, which has important consequences for the theory of two-dimensional turbulence. The analytical and numerical results presented here are in good qualitative agreement with experiment.


Author(s):  
Gorazd Medic ◽  
Donghyun You ◽  
Georgi Kalitzin

Large scale integrated computations of jet engines can be performed by using the unsteady RANS framework to compute the flow in turbomachinery components while using the LES framework to compute the flow in the combustor. This requires a proper coupling of the flow variables at the interfaces between the RANS and LES solvers. In this paper, a novel approach to turbulence coupling is proposed. It is based on the observation that in full operating conditions the mean flow at the interfaces is highly non-uniform and local turbulence production dominates convection effects in regions of large velocity gradients. This observation has lead to the concept of using auxilliary ducts to compute turbulence based on the mean velocity at the interface. In the case of the RANS/LES interface, turbulent fluctuations are reconstructed from an LES computation in an auxiliary three-dimensional duct using a recycling technique. For the LES/RANS interface, the turbulence variables for the RANS model are computed from an auxilliary solution of the RANS turbulence model in a quasi-2D duct. We have demonstrated the feasibility of this approach for the integrated flow simulation of a 20° sector of an entire jet engine.


1990 ◽  
Vol 211 ◽  
pp. 529-556 ◽  
Author(s):  
Amy E. Alving ◽  
Alexander J. Smits ◽  
Jonathan H. Watmuff

A study was undertaken to examine the flat plate relaxation behaviour of a turbulent boundary layer recovering from 90° of strong convex curvature (δ0/R = 0.08), for a length of ≈ 90δ0 after the end of curvature, where δ0 is the boundary layer thickness at the start of the curvature. The results show that the relaxation behaviour of the mean flow and the turbulence are quite different. The mean velocity profile and skin friction coefficient asymptotically approach the unperturbed state and at the last measuring station appear to be fully recovered. The turbulence relaxation, however, occurs in several stages over a much longer distance. In the first stage, a stress ‘bore’ (a region of elevated stress) is generated near the wall, and the bore thickens with distance downstream. Eventually it fills the whole boundary layer, but the stress levels continue to rise beyond their self-preserving values. Finally the stresses begin a gradual decline, but at the last measuring station they are still well above the unperturbed levels, and the ratios of the Reynolds stresses are distorted. These results imply a reorganization of the large-scale structure into a new quasi-stable state. The long-lasting effects of curvature highlight the sensitivity of a boundary layer to its condition of formation.


2002 ◽  
Vol 455 ◽  
pp. 243-262 ◽  
Author(s):  
M. GALMICHE ◽  
J. C. R. HUNT

The initial evolution of the momentum and buoyancy fluxes in a freely decaying, stably stratified homogeneous turbulent flow with r.m.s. velocity u′0 and integral lengthscale l0 is calculated using a weakly inhomogeneous and unsteady form of the rapid distortion theory (RDT) in order to study the growth of small temporal and spatial perturbations in the large-scale mean stratification N(z, t) and mean velocity profile ū(z, t) (here N is the local Brunt–Väisälä frequency and ū is the local velocity of the horizontal mean flow) when the ratio of buoyancy forces to inertial forces is large, i.e. Nl0/u′0[Gt ]1. The lengthscale L of the perturbations in the mean profiles of stratification and shear is assumed to be large compared to l0 and the presence of a uniform background mean shear can be taken into account in the model provided that the inertial shear forces are still weaker than the buoyancy forces, i.e. when the Richardson number Ri = (N/∂zū)2[Gt ]1 at each height.When a mean shear perturbation is introduced initially with no uniform background mean shear and uniform stratification, the analysis shows that the perturbations in the mean flow profile grow on a timescale of order N-1. When the mean density profile is perturbed initially in the absence of a background mean shear, layers with significant density gradient fluctuations grow on a timescale of order N−10 (where N0 is the order of magnitude of the initial Brunt–Väisälä frequency) without any associated mean velocity gradients in the layers. These results are in good agreement with the direct numerical simulations performed by Galmiche et al. (2002) and are consistent with the earlier physically based conjectures made by Phillips (1972) and Posmentier (1977). The model also shows that when there is a background mean shear in combination with perturbations in the mean stratification, negative shear stresses develop which cause the mean velocity gradient to grow in the density layers. The linear analysis for short times indicates that the scale on which the mean perturbations grow fastest is of order u′0/N0, which is consistent with the experiments of Park et al. (1994).We conclude that linear mechanisms are widely involved in the formation of shear and density layers in stratified flows as is observed in some laboratory experiments and geophysical flows, but note that the layers are also significantly influenced by nonlinear and dissipative processes at large times.


2018 ◽  
Vol 843 ◽  
pp. 419-449 ◽  
Author(s):  
Umair Ismail ◽  
Tamer A. Zaki ◽  
Paul A. Durbin

High-fidelity simulations of turbulent flow through a channel with a rough wall, followed by a smooth wall, demonstrate a high degree of non-equilibrium within the recovery region. In fact, the recovery of all the flow statistics studied is incomplete by the streamwise exit of the computational domain. Above a thin wall layer, turbulence intensities significantly higher than fully developed, smooth-wall levels persist in the developing region. Within the thin wall layer, the profile shapes for turbulence stresses recover very quickly and wall-normal locations of characteristic peaks are established. However, even in this thin layer, complete recovery of magnitudes of turbulence stresses is exceptionally slow. A similar initially swift but eventually incomplete and slow relaxation behaviour is also shown by the skin friction. Between the turbulence shear and streamwise stresses, the turbulence shear stress shows a comparatively quick rate of recovery above a thin wall layer. Over the developing smooth wall, the balance is not merely between fluxes due to pressure and shear stresses. Strong momentum fluxes, which are directly influenced by the upstream roughness size, contribute significantly to this balance. Approximate curve fits estimate the streamwise distance required by the outer peaks of Reynolds stresses to attain near-fully-developed levels at approximately $20\unicode[STIX]{x1D6FF}{-}25\unicode[STIX]{x1D6FF}$, with $\unicode[STIX]{x1D6FF}$ being the channel half height. An even longer distance, of more than $50\unicode[STIX]{x1D6FF}$, might be needed by the mean velocity to approach near-fully-developed magnitudes. Visualizations and correlations show that large-scale eddies that are created above the roughness persist downstream, and sporadically perturb the elongated streaks. These streaks of alternating high and low momentum appear almost instantly after the roughness is removed. The mean flow does not re-establish an equilibrium log layer within the computational domain, and the velocity deficit created by the roughness continues throughout the domain. On the step change in roughness, near the wall, profiles for turbulence kinetic energy dissipation rate, $\unicode[STIX]{x1D716}$, and energy spectra indicate a sharp reduction in energy at small scales. Despite this, reversion towards equilibrium smooth-wall levels is slow, and ultimately incomplete, due to a rather slow adjustment of the turbulence cascade. The non-dimensional roughness height, $k^{+}$ ranges from 42 to 254 and the friction velocity Reynolds number at the smooth wall, $Re_{\unicode[STIX]{x1D70F}S}$, ranges from 284 to 1160 in the various simulations.


Author(s):  
Firas F. Siala ◽  
Alexander D. Totpal ◽  
James A. Liburdy

An experimental study was conducted to explore the effect of surface flexibility at the leading and trailing edges on the near-wake flow dynamics of a sinusoidal heaving foil. Mid-span particle image velocimetry measurements were taken in a closed loop wind tunnel at a Reynolds number of 25,000 and at a range of reduced frequencies (k = fc/U) from 0.09–0.20. Time resolved and phase locked measurements were used to describe the mean flow characteristics and phase averaged vortex structures and their evolution throughout the oscillation cycle. Large eddy scale decomposition and swirl strength analysis were used to quantify the effect of flexibility on the vortical structures. The results demonstrate that flexibility at the trailing edge has a minimal influence on the mean flow characteristics when compared to the purely rigid foil. The mean velocity deficit for the flexible trailing edge and rigid foils is shown to remain constant for all reduced frequencies tested. However, the trailing edge flexibility increases the swirl strength of the small scale structures, which results in enhanced cross stream dispersion of the mean velocity profile. Flexibility at the leading edge is shown to generate a large scale leading edge vortex for k ≥ 0.18. This results in a reduction in the swirl strength due to the complex vortex interactions when compared to the flexible trailing edge and rigid foils. Furthermore, it is shown that the large scale leading edge vortex is responsible for extracting a significant portion of the energy from the mean flow, resulting in a substantial reduction of mean flow momentum in the wake. The kinetic energy loss in the wake is shown to scale well with the energy content of the leading edge vortex.


Author(s):  
J S Lee ◽  
R H Pletcher

Turbulent combined flow of forced and natural convection was investigated using large eddy simulations for horizontal and vertical channels with significant heat transfer. The walls were maintained at constant temperatures, one heated and the other cooled, at temperature ratios of 1.01, 1.99, and 3.00, respectively. Results showed that with increasing the Grashof number, large-scale turbulent motions emerged near the wall, resulting in significant changes in turbulent intensities for the horizontal channel flow case. Aiding and opposing flows, however, for the vertical channel, emerge near the heated and cooled walls, respectively, while the pressure gradient drives the mean flow upwards. Buoyancy effects on the mean velocity, temperature, and turbulent intensities were observed near the walls. In the aiding flow, the turbulent intensities and heat transfer were suppressed and the flow was relaminarized at large values of the Grash of number. In the opposing flow, however, turbulence was enhanced with increasing velocity fluctuations.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


Author(s):  
Huixuan Wu ◽  
Rinaldo L. Miorini ◽  
Joseph Katz

A series of high resolution planar particle image velocimetry measurements performed in a waterjet pump rotor reveal the inner structure of the tip leakage vortex (TLV) which dominates the entire flow field in the tip region. Turbulence generated by interactions among the TLV, the shear layer that develops as the backward leakage flow emerges from the tip clearance as a “wall jet”, the passage flow, and the endwall is highly inhomogeneous and anisotropic. We examine this turbulence in both RANS and LES modelling contexts. Spatially non-uniform distributions of Reynolds stress components are explained in terms of the local mean strain field and associated turbulence production. Characteristic length scales are also inferred from spectral analysis. Spatial filtering of instantaneous data enables the calculation of subgrid scale (SGS) stresses, along with the SGS energy flux (dissipation). The data show that the SGS energy flux differs from the turbulence production rate both in trends and magnitude. The latter is dominated by energy flux from the mean flow to the large scale turbulence, which is resolved in LES, whereas the former is dominated by energy flux from the mean flow to the SGS turbulence. The SGS dissipation rate is also used for calculating the static and dynamic Smagorinsky coefficients, the latter involving filtering at multiple scales; both vary substantially in the tip region, and neither is equal to values obtained in isotropic turbulence.


Sign in / Sign up

Export Citation Format

Share Document