scholarly journals Test section streaks originating from imperfections in a zither located upstream of a contraction

2015 ◽  
Vol 787 ◽  
pp. 254-291 ◽  
Author(s):  
David A. Pook ◽  
Jonathan H. Watmuff ◽  
Adrian C. Orifici

Defining a link between wind-tunnel settling chamber screens, flow quality and test section boundary-layer spanwise variation is necessary for accurate transition prediction. The aim of this work is to begin establishing this link. The computed, steady, laminar wake of a zither (screen model) with imperfect wire spacing is tracked through a contraction and into a model test section. The contraction converts the zither wake into streamwise vorticity which then creates spanwise variation (streaks) in the test-section boundary layer. The magnitude of the spanwise variation is sensitive to the zither open-area ratio and imperfections, but the observed wavelength is relatively insensitive to the zither wire spacing. Increased spanwise variation is attributed to large wavelength variation of drag across the zither, and not the coalescence of jets phenomena. The linear stability of the streaks is predicted using the parabolized stability equations with the $\text{e}^{N}$ method. A standard deviation of zither wire position error of 38.1 ${\rm\mu}$m (15 % of wire diameter) for a zither of 50 % open-area ratio is found to suppress Tollmien–Schlichting wave growth significantly.

2011 ◽  
Vol 681 ◽  
pp. 116-153 ◽  
Author(s):  
NICHOLAS J. VAUGHAN ◽  
TAMER A. ZAKI

The secondary instability of a zero-pressure-gradient boundary layer, distorted by unsteady Klebanoff streaks, is investigated. The base profiles for the analysis are computed using direct numerical simulation (DNS) of the boundary-layer response to forcing by individual free-stream modes, which are low frequency and dominated by streamwise vorticity. Therefore, the base profiles take into account the nonlinear development of the streaks and mean flow distortion, upstream of the location chosen for the stability analyses. The two most unstable modes were classified as an inner and an outer instability, with reference to the position of their respective critical layers inside the boundary layer. Their growth rates were reported for a range of frequencies and amplitudes of the base streaks. The inner mode has a connection to the Tollmien–Schlichting (T–S) wave in the limit of vanishing streak amplitude. It is stabilized by the mean flow distortion, but its growth rate is enhanced with increasing amplitude and frequency of the base streaks. The outer mode only exists in the presence of finite amplitude streaks. The analysis of the outer instability extends the results of Andersson et al. (J. Fluid Mech. vol. 428, 2001, p. 29) to unsteady base streaks. It is shown that base-flow unsteadiness promotes instability and, as a result, leads to a lower critical streak amplitude. The results of linear theory are complemented by DNS of the evolution of the inner and outer instabilities in a zero-pressure-gradient boundary layer. Both instabilities lead to breakdown to turbulence and, in the case of the inner mode, transition proceeds via the formation of wave packets with similar structure and wave speeds to those reported by Nagarajan, Lele & Ferziger (J. Fluid Mech., vol. 572, 2007, p. 471).


2014 ◽  
Vol 752 ◽  
pp. 462-484 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

AbstractWe introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Valery N. Afanasiev ◽  
Dehai Kong ◽  
S. A. Isaev

Abstract This study presents the results of the experimental study on hydrodynamics and heat transfer in separation zone in front and behind a single rectangular perforated rib mounted on a flat plate. The effects of perforation open-area ratio (β = 12%, 23.5%, and 44%) and the location of the hole on the rib (at the bottom, at the top, and in a staggered arrangement) on the mean and fluctuating characteristics of the turbulent dynamic and thermal boundary layers in the median section of the plate were examined. It was established that the stagnant and recirculation zones in the front and behind the perforated rib were shifted and became smaller or disappeared.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


2002 ◽  
Vol 472 ◽  
pp. 229-261 ◽  
Author(s):  
LUCA BRANDT ◽  
DAN S. HENNINGSON

A transition scenario initiated by streamwise low- and high-speed streaks in a flat-plate boundary layer is studied. In many shear flows, the perturbations that show the highest potential for transient energy amplification consist of streamwise-aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. In a previous investigation (Andersson et al. 2001), the stability of these streaks in a zero-pressure-gradient boundary layer was studied by means of Floquet theory and numerical simulations. The sinuous instability mode was found to be the most dangerous disturbance. We present here the first simulation of the breakdown to turbulence originating from the sinuous instability of streamwise streaks. The main structures observed during the transition process consist of elongated quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of alternating sign are overlapping in the streamwise direction in a staggered pattern. The present scenario is compared with transition initiated by Tollmien–Schlichting waves and their secondary instability and by-pass transition initiated by a pair of oblique waves. The relevance of this scenario to transition induced by free-stream turbulence is also discussed.


Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5 stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien Schlichting (T-S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space∼time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


Author(s):  
Yasaman Farsiani ◽  
Brian R. Elbing

This paper reports on the characterization of the custom-designed high-Reynolds number recirculating water tunnel located at Oklahoma State University. The characterization includes the verification of the test section design, pump calibration and the velocity distribution within the test section. This includes an assessment of the boundary layer growth within the test section. The tunnel was designed to achieve a downstream distance based Reynolds number of 10 million, provide optical access for flow visualization and minimize inlet flow non-uniformity. The test section is 1 m long with 15.2 cm (6-inch) square cross section and acrylic walls to allow direct line of sight at the tunnel walls. The verification of the test section design was accomplished by comparing the flow quality at different location downstream of the flow inlet. The pump was calibrated with the freestream velocity with three pump frequencies and velocity profiles were measured at defined locations for three pump speeds. Boundary layer thicknesses were measured from velocity profile results and compared with analytical calculations. These measurements were also compared against the facility design calculations.


Sign in / Sign up

Export Citation Format

Share Document