Transformation of internal waves passing over a bottom step

2015 ◽  
Vol 768 ◽  
Author(s):  
Egor N. Churaev ◽  
Sergey V. Semin ◽  
Yury A. Stepanyants

The transformation of small-amplitude internal waves on the oceanic shelf is studied numerically. The transmission and reflection coefficients are found for the simplified step-wise model of the oceanic shelf in a two-layer fluid. The approximate formulae are proposed for the transformation coefficients as functions of incident wavenumber, density ratio of layers, depth of the pycnocline and height of the bottom step. Results of direct numerical modelling of internal wave transformation are obtained and presented as functions of all aforementioned parameters. It is shown that there is a good agreement between the outcomes of approximate theory and numerical data. Both the theoretical and the numerical results agree well with the law of energy flux conservation.

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1032
Author(s):  
Lei Chen ◽  
Ying Ruan ◽  
Si Si Luo ◽  
Fu Ju Ye ◽  
Hao Yang Cui

In this paper, we present a flexible, breathable and optically transparent metasurface with ultra-wideband absorption. The designed double layer of indium tin oxide (ITO) films with specific carved structure realizes absorption and electromagnetic (EM) isolation in dual-polarization, as well as good air permeability. Under the illumination of x- and y-polarization incidence, the metasurface has low reflectivity and transmission from about 2 to 18 GHz. By employing ITO film based on polyethylene terephthalate (PET), the presented metasurface also processes the excellent flexibility and optically transparency, which can be utilized for wearable device application. In addition, the dual-layer design enables mechanically-reconfigurable property of the metasurface. The transmission and reflection coefficients in two polarizations show distinct difference when arranging the different relevant positions of two layers of the metasurface. A sample with 14*14 elements is designed, fabricated and measured, showing good agreement with the simulation results. We envision this work has various potentials in the wearable costume which demands both EM absorption and isolation.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3499
Author(s):  
Anatoly B. Rinkevich ◽  
Dmitry V. Perov ◽  
Yuriy I. Ryabkov

The microwave properties of a composite material containing flakes of finemet-type nanocrystalline alloy placed in the epoxy matrix have been investigated. Two compositions have been studied: with 15% and 30% flakes. Frequency dependences of transmission and reflection coefficients are measured in the frequency range from 12 to 38 GHz. The dielectric permittivity and magnetic permeability are obtained, and the microwave losses are calculated. The dependences of transmission and reflection coefficients have been drawn as functions of wave frequency and thickness of the composite material, taking into account the frequency dependences of permittivity and permeability. The regions of maximal and minimal microwave absorption have been defined. The influence of wave interference on the frequency dependence of microwave absorption is studied.


Author(s):  
O. Langueur ◽  
M. Merad ◽  
A. Rassoul

In this paper, we study the Duffin–Kemmer–Petiau (DKP) equation in the presence of a smooth barrier in dimensions space–time (1+1) dimensions. The eigenfunctions are determined in terms of the confluent hypergeometric function [Formula: see text]. The transmission and reflection coefficients are calculated, special cases as a rectangular barrier and step potential are analyzed. A numerical study is presented for the transmission and reflection coefficients graphs for some values of the parameters [Formula: see text] are plotted.


Author(s):  
Hironori Tohmyoh

Abstract This paper presents the materials evaluation and environmental monitoring techniques utilizing the acoustic resonance, which have been developed by the authors. When the ultrasound passes through thin layer, the transmission and reflection coefficients take their maximum and the minimum values at the resonant frequency. We call this acoustic resonance. The acoustic properties of a polymer film, e.g., the acoustic impedance, ultrasonic velocity, and density, can be determined by observing the acoustic resonance, which occurs at the water/film/reflection plate interface. Acoustic resonance occurs at the reflection plate/film/outer environment interface sensitively changes depending on the outer environment. With use of this, the temperature of the water as an outer environment is tried to be monitored.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950087 ◽  
Author(s):  
Luis Puente ◽  
Carlos Cocha ◽  
Clara Rojas

We present a new potential barrier that presents the phenomenon of superradiance when the reflection coefficient [Formula: see text] is greater than one. We calculated the transmission and reflection coefficients for three different regions. The results are compared with those obtained for the hyperbolic tangent potential barrier and the step potential barrier. We also present the solution of the Klein–Gordon equation with the Lambert-[Formula: see text] potential barrier in terms of the Heun Confluent functions.


Sign in / Sign up

Export Citation Format

Share Document