Impact of a high-speed train of microdrops on a liquid pool

2016 ◽  
Vol 792 ◽  
pp. 850-868 ◽  
Author(s):  
Wilco Bouwhuis ◽  
Xin Huang ◽  
Chon U Chan ◽  
Philipp E. Frommhold ◽  
Claus-Dieter Ohl ◽  
...  

A train of high-speed microdrops impacting on a liquid pool can create a very deep and narrow cavity, reaching depths more than 1000 times the size of the individual drops. The impact of such a droplet train is studied numerically using boundary integral simulations. In these simulations, we solve the potential flow in the pool and in the impacting drops, taking into account the influence of liquid inertia, gravity and surface tension. We show that for microdrops the cavity shape and maximum depth primarily depend on the balance of inertia and surface tension and discuss how these are influenced by the spacing between the drops in the train. Finally, we derive simple scaling laws for the cavity depth and width.

2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


2016 ◽  
Vol 21 (1) ◽  
pp. 231-238
Author(s):  
K. Grębowski ◽  
Z. Ulman

Abstract The following research focuses on the dynamic analysis of impact of the high-speed train induced vibrations on the structures located near railway tracks. The office complex chosen as the subject of calculations is located in the northern part of Poland, in Gdańsk, in the proximity of Pendolino, the high speed train route. The high speed trains are the response for the growing needs for a more efficient railway system. However, with a higher speed of the train, the railway induced vibrations might cause more harmful resonance in the structures of the nearby buildings. The damage severity depends on many factors such as the duration of said resonance and the presence of additional loads. The studies and analyses helped to determinate the method of evaluating the impact of railway induced vibrations on any building structure. The dynamic analysis presented in the research is an example of a method which allows an effective calculation of the impact of vibrations via SOFISTIK program.


Author(s):  
Kalpak P. Gatne ◽  
Milind A. Jog ◽  
Raj M. Manglik

A study of the normal impact of liquid droplets on a dry horizontal substrate is presented in this paper. The impact dynamics, spreading and recoil behavior are captured using a high-speed digital video camera at 2000 frames per second. A digital image processing software was used to determine the drop spread and height of the liquid on the surface from each frame. To ascertain the effects of liquid viscosity and surface tension, experiments were conducted with four liquids (water, ethanol, propylene glycol and glycerin) that have vastly different fluid properties. Three different Weber numbers (20, 40, and 80) were considered by altering the height from which the drop is released. The high-speed photographs of impact, spreading and recoil are shown and the temporal variations of dimensionless drop spread and height are provided in the paper. The results show that changes in liquid viscosity and surface tension significantly affect the spreading and recoil behavior. For a fixed Weber number, lower surface tension promotes greater spreading and higher viscosity dampens spreading and recoil. Using a simple scale analysis of energy balance, it was found that the maximum spread factor varies as Re1/5 when liquid viscosity is high and viscous effects govern the spreading behavior.


2016 ◽  
Vol 789 ◽  
pp. 708-725 ◽  
Author(s):  
Maurice H. W. Hendrix ◽  
Wilco Bouwhuis ◽  
Devaraj van der Meer ◽  
Detlef Lohse ◽  
Jacco H. Snoeijer

When a millimetre-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build-up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the boundary integral method for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results with various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume $V_{b}$ is found to be in agreement with the theoretical scaling $V_{b}/V_{drop/sphere}\sim \mathit{St}^{-4/3}$, where $\mathit{St}$ is the Stokes number. This is the same scaling as has been found for drop impact onto a solid surface in previous research. This implies a universal mechanism for air entrainment for these different impact scenarios, which has been suggested in recent experimental work, but is now further elucidated with numerical results.


2007 ◽  
Vol 577 ◽  
pp. 241-250 ◽  
Author(s):  
A. ANTKOWIAK ◽  
N. BREMOND ◽  
S. LE DIZÈS ◽  
E. VILLERMAUX

A tube filled with a perfectly wetting liquid falls axially under its own weight. In its gravity-free reference frame, the liquid interface is deformed by surface tension into a hemispherical shape. On impact of the tube on a rigid floor, the interface curvature reverses violently, forming a concentrated jet. If the contact angle at the tube wall is such that the interface is flat, the liquid rebounds as a whole with the tube, with no deformation. We analyse this phenomenon using an impulse pressure description, providing an exact description of the initial liquid velocity field at the impact, supported by high-speed image velocimetry measurements. This initial dynamics is insensitive to liquid surface tension and viscosity.


2018 ◽  
Vol 197 ◽  
pp. 08016
Author(s):  
Rafil Arizona ◽  
Teguh Wibowo ◽  
Indarto Indarto ◽  
Deendarlianto Deendarlianto

The impact between multiple droplets onto hot surface is an important process in a spray cooling. The present study was conducted to investigate the dynamics of multiple droplet impact under various surface tensions. Here, the ethylene glycol with compositions of 0%, 5%, and 15% was injected through a nozzle onto stainless steel surface as the multiple droplet. The solid surface was heated at the temperatures of 100 °C, 150 °C, and 200 °C. To observe the dynamics of multiple droplets, a high speed camera with the frame rate of 2000 fps was used. A technique of image processing was developed to determine the maximum droplet spreading ratio. As the result, the surface tension contributes significantly to maximum spreading ratio. As the droplet surface tension decreases, the maximum spreading ratio increases. The maximum spreading ratio appears when the percentage of the ethylene glycol is 15% at the temperature of 150°C. From the visual observation, it is shown that a slower emergence of secondary droplets (droplet splashing) is carried out under a lower surface tension. Hence, surface tension plays an important role on the behavior of emerging secondary droplets. Furthermore, results of the experiments are useful for the validation of available previous CFD models.


Sign in / Sign up

Export Citation Format

Share Document